
FINAL ANNUAL MONITORING REPORT YEAR 4 (2015) TATE FARM (RIPSHIN BRANCH) STREAM/WETLAND RESTORATION SITE ASHE COUNTY, NORTH CAROLINA (DMS Project No. 372, Contract No. 004802) Construction Completed December 2011

Submitted to:
North Carolina Department of Environmental Quality
Division of Mitigation Services
Raleigh, North Carolina

FINAL ANNUAL MONITORING REPORT YEAR 4 (2015) TATE FARM (RIPSHIN BRANCH) STREAM/WETLAND RESTORATION SITE ASHE COUNTY, NORTH CAROLINA (DMS Project No. 372, Contract No. 004802) Construction Completed December 2011

Submitted to:
North Carolina Department of Environmental Quality
Division of Mitigation Services
Raleigh, North Carolina

Prepared by:
Axiom Environmental, Inc.
218 Snow Avenue
Raleigh, North Carolina 27603

December 2015

Table of Contents

1.0 EXECUTIVE SUMMARY
2.0 METHODOLOGY
2.1 Vegetation Assessment
2.2 Stream Assessment
3.0 REFERENCES 4
Appendices
APPENDIX A. PROJECT VICINITY MAP AND BACKGROUND TABLES
Figure 1. Vicinity Map
Table 1. Project Components and Mitigation Credits
Table 2. Project Activity and Reporting History
Table 3. Project Contacts Table
Table 4. Project Baseline Information and Attributes
APPENDIX B. VISUAL ASSESSMENT DATA
Figures 2 and 2A-2F. Current Conditions Plan View
Tables 5A-5B. Visual Stream Morphology Stability Assessment
Table 6. Vegetation Condition Assessment
Stream Fixed-Station Photographs
Vegetation Monitoring Photographs
APPENDIX C. VEGETATION PLOT DATA
Table 7. Vegetation Plot Criteria Attainment
Table 8. CVS Vegetation Plot Metadata
Table 9. Total and Planted Stems by Plot and Species
APPENDIX D. STREAM SURVEY DATA
Cross-section Plots
Longitudinal Profile Plots
Substrate Plots
Table 10a-10d. Baseline Stream Data Summary
Table 11a-11d. Monitoring Data
APPENDIX E. HYDROLOGY DATA
Table 12. Verification of Bankfull Events
Table 13. Wetland Hydrology Criteria Attainment Summary
Groundwater Gauge Graphs

1.0 EXECUTIVE SUMMARY

The Tate Farm (Ripshin Branch) Stream and Wetland Restoration Site (hereafter referred to as the Site) is situated within US Geological Survey (USGS) hydrologic unit 05050001 of the Upper New River Basin and is in a portion of NC Division of Water Resources (NCDWR) Priority Subbasin 05-07-02. The project is located in the northwest corner of Ashe County, about 1 mile south of the Virginia state line and 3 miles east of the Tennessee state line (Figure 1, Appendix A). The Site is encompassed within a 61.92-acre easement located in a tract owned by Michael and Virginia Tate. The Site includes an unnamed tributary to Ripshin Branch (UT), Ripshin Branch proper, associated floodplain wetlands, and additional tributaries found on the property (Figure 2, Appendix B). This report (compiled based on DMS's *Procedural Guidance and Content Requirements for EEP Monitoring Reports*, Version 1.4, dated 11/7/11) summarizes data for Year 4 (2015) monitoring.

The project goals are as follows.

- Improve stream water quality and ecological function by excluding livestock, restoring pool and riffle sequences, and restoring tree canopy and instream large woody debris.
- Enhance aquatic and terrestrial habitat in the stream corridor and adjacent wetlands.
- Enhance and/or restore the ecological function of riparian wetlands.
- Restore the riparian corridor (forested buffer) for watershed and wildlife benefits.
- Enhance habitat for native brook trout (Salvelinus fontinalis) and improve fishery potential.
- Increase biodiversity of the stream ecology, riparian buffers, and wetlands.

These goals will be accomplished through the implementation of the following objectives.

- Improve channel geomorphology toward reference conditions by providing watershed scaled and Rosgen-typed channel dimension, adding floodplain benches where floodplain access is not feasible, restoring sinuous pattern to straightened reaches where possible, and adjusting profile as needed to restore or maintain sediment transport equilibrium.
- Restore stream-side floodprone area where appropriate (increase floodwater access to the floodplain).
- Reduce sediment and nutrient loading by reshaping and stabilizing banks, reducing bank scour, excluding livestock, and restoring riparian buffers.
- Enhance or restore wetland hydrology and vegetation in former pastures and filled wetlands.

After construction, five vegetation plots were established and sampled. During Year 2 (2013) monitoring, thirteen additional vegetation plots were established and sampled. Vegetation Success Criteria (from the approved *Ripshin Branch Stream & Wetland Restoration Plan* [NCDMS 2007]) include the following.

- Survival of planted vegetation should exceed 80 percent after 5 years following planting (minimum 260 stems/acre).
- Planted vegetation stabilizing at 20 years with distinct canopy, subcanopy, and shrub layers.
- Establishment of herbaceous cover over 75 percent of the soil surface in restored wetlands and riparian areas.
- Plant biodiversity dominated by native species, with minimal ecological impact from invasive species.

Overall, vegetation was below success criteria with an average of 272 planted stems/acre (excluding livestakes) across the Site. In addition, six of the eighteen vegetation monitoring plots met, or exceeded success criteria. Plots 1-5 and 14 are located along the Ripshin Branch and unnamed tributary stream and wetland restoration areas. The vegetation within these areas is meeting success criteria with an average of 452 planted stems/acre. Additionally, four of the six plots in this area met or exceeded success criteria. Potential causes of the low stem counts at Plots 2 and 4 include excessive hydrology associated with wetland restoration and over competition by sedges and soft rush (*Carex* spp. and *Juncus effusus*, respectively). Plots 6-13 and 15-18 are located in the Enhancement (level II) areas throughout the remainder of the Site. Average stem density throughout this area is 182 stems/acre. Additionally, only two of the twelve plots in these areas met or exceeded success criteria. Low stem density in these areas can be attributed to poor planted stem survival due to harsh, high elevation climate and poor soils. Supplemental planting throughout the Site Enhancement (level II) reaches is recommended for the winter of 2015/2016.

In addition to low stem densities, one vegetation area of concern was noted at the beginning of 2013. An overbank event scoured the floodplain and deposited gravel and silt along both banks at the downstream end of Ripshin Branch near Vegetation Plot 5, and a number of planted stems were buried by debris and sediment. This area appears to have stabilized, with woody stems and herbaceous vegetation reestablishing. However, this area continues to scour during high stream flows and is characterized by poorly developed rocky soils.

A visual assessment and geomorphic survey were completed for the Site. The visual assessment indicated that project reaches were performing within established success criteria ranges as shown below. During a 2013 heavy, summer rain event, a boulder was dislodged in a right bank structure in the lower portion of Ripshin Branch. The boulder has since been stabilized by dense herbaceous vegetation and is no longer dislodged. The structure will continue to be monitored closely but is not expected to dislodge again during normal rain conditions.

During Monitoring Years 2 and 3 (2013-2014), approximately 25,320 linear feet of additional stream was mapped onsite using sub-meter GPS. The locations of additional streams are depicted on Figures 2A-2F (Appendix B).

Stream Success Criteria (from the approved *Ripshin Branch Stream & Wetland Restoration Plan* [NCDMS 2007]) is as follows.

- Channel morphology retains the design stream type over the majority of the reach.
- Coarsening of riffle bed material in newly constructed reaches.
- Pool/riffle spacing should remain fairly constant.
- Maintenance of bankfull width at riffles within 10 percent of the design.
- Maintenance of bank height ratios at 1:1.
- Bank stability over 90 percent of altered channel reaches.
- Dimension and profile stability over 90 percent of altered channel reaches.
- No significant channel aggradation or degradation.
- Minimal development of instream bars.
- Biological populations (invertebrate and fish) remain constant or increase and species composition indicates a positive trend.

Success criteria for stream restoration will be based on stream stability assessed using measurements of stream dimension, pattern, and profile; Site photographs; visual assessments; and vegetation sampling. Streams appear to be functioning properly, emulate design conditions, and are trending towards success.

Wetland hydrology success criteria (from the approved *Ripshin Branch Stream & Wetland Restoration Plan* [NCDMS 2007]) is as follows.

- Hydrologic monitoring indicates groundwater within 12 inches of the ground surface for 10 percent of the growing season
- Increasing wetland vegetation
- Development of hydric soils
- Fulfill US Army Corps of Engineers (USACE) criteria for jurisdictional wetlands

Six groundwater gauges were installed at the Site in mid-October 2012; therefore, no groundwater gauge data is available for year 1 (2012) monitoring. All six groundwater gauges were saturated/inundated for well over 10 percent of the year 4 (2015) growing season.

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on the NC Division of Mitigation Services' (NCDMS) website. All raw data supporting the tables and figures in the appendices are available from NCDMS upon request.

2.0 METHODOLOGY

2.1 Vegetation Assessment

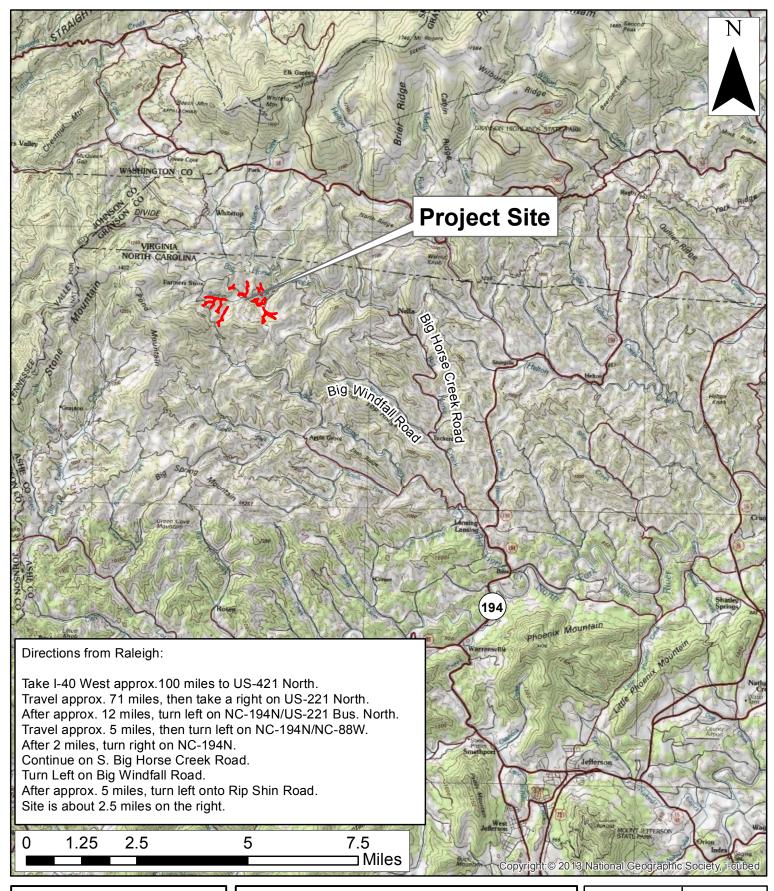
Five vegetation plots were established and marked during the Year 1 (2012) monitoring period, and 13 additional plots were established and marked during the Year 2 (2013) monitoring period, yielding a total of 18 vegetation plots on the site. Plots were established by installing 4-foot, metal U-bar post at the corners and a 10-foot, 0.75 inch PVC at the origin. The plots are 10 meters square or 20 meters by 5 meters and are located randomly within the Site. These plots were surveyed in July 2015 for the Year 4 (2015) monitoring season *CVS-EEP Protocol for Recording Vegetation, Levels 1-2 Plot Sampling Only Version 4.2* (Lee et al. 2008) (http://cvs.bio.unc.edu/methods.htm); results are included in Appendix C. The taxonomic standard for vegetation used for this document was *Flora of the Southern and Mid-Atlantic States* (Weakley 2012).

2.2 Stream Assessment

Annual stream monitoring was conducted in April 2015. Measurements were taken using a Topcon GTS 303 total station and Recon data collector. The raw total station file was processed using Carlson Survey Software into a Computer Aided Design (CAD) file. Coordinates were exported as a text/ASCII file to Microsoft Excel for processing and presentation of data. Pebble counts were completed using the modified Wolman method (Rosgen 1993).

Eight permanent cross-sections, six riffle and two pool, were established and will be used to evaluate stream dimension; locations are depicted on Figures 2A and 2B (Appendix B). Cross-sections are permanently monumented with 4-foot metal U-bar posts at each end point. Cross-sections will be surveyed to provide a detailed measurement of the stream and banks, including points on the adjacent floodplain, top of bank, bankfull, breaks in slope, edge of water, and thalweg. Data will be used to calculate width-depth ratios, entrenchment ratios, and bank height ratios for each cross-section. In addition, pebble counts were completed at cross-sections 4 and 8, and photographs will be taken at each permanent cross-section annually.

Two monitoring reaches were established (Unnamed Tributary and Ripshin Branch) and will be used to evaluate stream pattern and longitudinal profile; locations are depicted on Figures 2A and 2B (Appendix B). Longitudinal profile measurements include average water surface slopes, facet slopes, and pool-to-pool spacing. Seventeen permanent photo points were established throughout the restoration reach; locations are depicted on Figures 2A and 2B (Appendix B). In addition, visual stream morphology and stability assessments were completed in each of the two monitoring reaches to assess the channel bed, banks, and in-stream structures.


3.0 REFERENCES

- .Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Levels 1-2 Plot Sampling Only, Version 4.2. Available online at http://cvs.bio.unc.edu/methods.htm.
- N.C. Division of Mitigation Services (DMS, formerly Ecosystem Enhancement Program). Unpublished. Procedural Guidance and Content Requirements for EEP Monitoring Projects, Version 1.4, dated 11/07/11. NC Department of Environment and Natural Resources. Available online at http://portal.ncdenr.org/c/document_library/get_file? p 1 id=1169848&folderId=2288101&name=DLFE-39268.pdf
- N.C. Division of Mitigation Services (DMS, formerly Ecosystem Enhancement Program). 2007. Ripshin Branch Stream and Wetland Restoration Plan Ashe County, NC.
- Rosgen. 1993. Applied Fluvial Geomorphology, Training Manual. River Short Course, Wildland Hydrology, Pagosa Springs, CO.
- Weakley, Alan S. 2012. Flora of the Southern and Mid-Atlantic States. Available online at: http://www.herbarium.unc.edu/WeakleysFlora.pdf [September 28, 2012]. University of North Carolina Herbarium, North Carolina Botanical Garden, University of North Carolina, Chapel Hill, North Carolina.
- Weather Underground. 2014. Station at Jefferson, North Carolina. (online). Available: http://www.wunderground.com/history/airport/KGEV/2014/1/1/CustomHistory.html?dayend=7&monthend=6&yearend=2013&req_city=NA&req_state=NA&req_statename=NA [June 7, 2014]. Weather Underground.

APPENDIX A

PROJECT VICINITY MAP AND BACKGROUND TABLES

- Figure 1. Vicinity Map
- Table 1. Project Components and Mitigation Credits
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Baseline Information and Attributes

VICINITY MAP
TATE FARM (RIPSHIN BRANCH)
DMS PROJECT NUMBER 372
Ashe County, North Carolina

Own. by. KRJ	FIGURE
Date: November 2015	1
Project: 12-004.13	•

Table 1. Project Components and Mitigation Credits

ate Farm (Kipsnin		Touris und Trouble		Mitigation Credi	9 /			
		Stream		8	Riparian V	Vetland		D CC
Type	Restoration Restoration Equivalent Resto		toration Restoration Equivalent			Buffer		
Totals	7308		2774		3.8		•	
Projects Components								
Project Component/ Reach ID	Station Range	Existing Linear Footage/ Acreage	Priority Approach	Restoration/ Restoration Equivalent	Restoration Linear Footage/ Acreage	Mitigation Ratio	Coi	mment
Reach 1A (Ripshin Br. – Area 2)	00+00- 08+00	800	Enhancement	ΕII	800	1:2.5		
Reach 1B (Ripshin Br. – Area 2)	08+00- 12+00	350	Priority II	R	400	1:1		
Reach 1C (Ripshin Br. – Area 2)	12+00- 14+85	285	Enhancement	E II	285	1:2.5		
Reach 2A (Ripshin Br. – Area 2)	14+85- 23+00	785	Priority II	R	815	1:1		
Ripshin Branch - Area 2		518	Preservation	P	518	1:5		
Reach 3A (UT – Area 1)	00+00- 01+24	132	Enhancement	ΕI	124	1:1.5		
Reach 3B (UT – Area 1)	01+24- 09+12	688	Priority I	R	788	1:1		
Area 1 Tributaries		2419	Enhancement	E II	2419	1:2.5		
Area 1 Tributaries		889	Preservation	P	889	1:5		
Area 2 Tributaries		2166	Enhancement	ΕII	2166	1:2.5		
Area 2 Tributaries		1158	Preservation	P	1158	1:5		
Area 3 Tributaries		4020	Enhancement	ΕII	4020	1:2.5		
Area 3 Tributaries		2208	Preservation	P	2208	1:5		
Area 4 Tributaries		3367	Enhancement	ΕII	3367	1:2.5		
Area 4 Tributaries		9096	Preservation	P	9096	1:5		
Wetland UT		0		R	1.5	1:1		
Wetland UT		1.24		Е	1.24	1:2		
Wetland Ripshin Branch		0		R	2.30	1:1		<u>-</u>
Wetland Ripshin Branch		2.74		Е	2.74	1:2		·

Table 1. Project Components and Mitigation Credits (continued)

Component Summation							
Restoration Level	Stream (linear footage)	Riparian Wetland (acres)	Buffer (square footage)				
Restoration	2003	3.8					
Enhancement (Level I)	124						
Enhancement (Level II)	13057						
Preservation	13869						
Wetland Enhancement		3.98					
Creation							
Totals	29053	7.78					
Mitigation Units	10082 SMUs	5.79 WMUs					

Table 2. Project Activity and Reporting History

Tate Farm (Ripshin Branch) Stream and Wetland Restoration Site (DMS Project Number 372)

Elapsed Time Since Grading Complete: 4 years 4 months Elapsed Time Since Planting Complete: 4 years 0 months

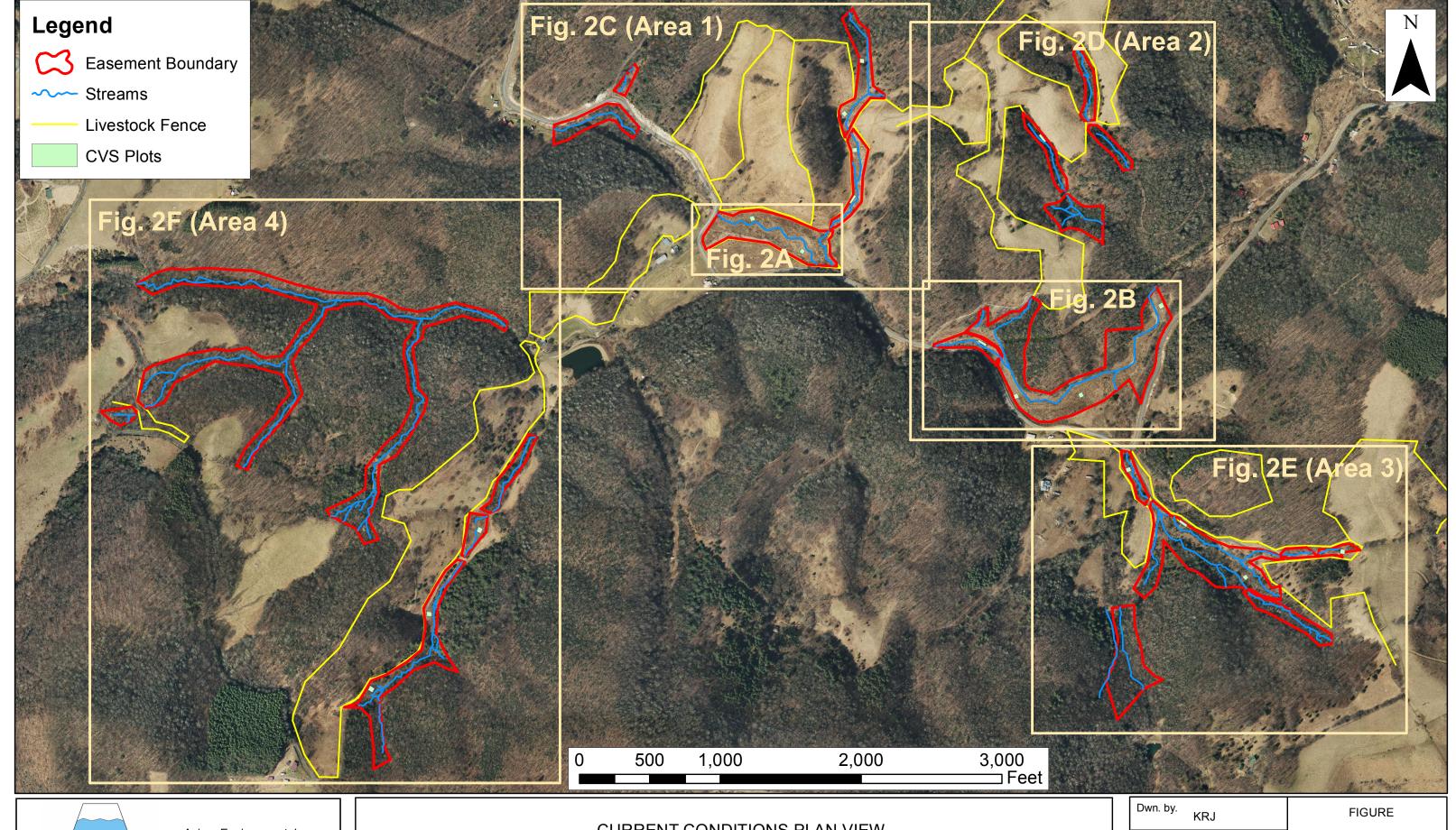
Number of Reporting Years: 4

	Data Collection	Completion
Activity or Deliverable	Complete	or Delivery
Restoration Plan		March 2007
Final Design – Construction Plans		September 2009
Construction		August 2011
Temporary S&E mix applied to entire project area		August 2011
Permanent seed mix applied to entire project area		August 2011
Containerized and B&B plantings for entire reach		December 2011
As-built Construction Plans		December 2011
Year 1 Monitoring (2012)	October 2012	December 2012
Year 2 Monitoring (2013)	November 2013	January 2014
Year 3 Monitoring (2014)	October 2014	November 2014
Year 4 Monitoring (2015)	October 2015	December 2015
Year 5 Monitoring (2016)		

Table 3. Project Contacts Table

Designer	Ecologic Associates, P.C.
	Greensboro, NC 27404
	Mark Taylor 336-382-9362
Construction Contractor	Land Mechanics Designs, Inc
	Willow Spring, NC 27529
	Lloyd Glover 919-422-3392
Planting and Seeding Contractor	Habitat Assessment Restoration Program
	Charlotte, NC 28262
Surveyor	Stewart Proctor
	Raleigh, NC 27603
	Herb Proctor 919-779-1855
Seed Mix Source	Green Resource
	Colfax, NC 27235
	336-855-6363
Years 1-5 Monitoring Performers	Axiom Environmental, Inc.
	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis 919-215-1693

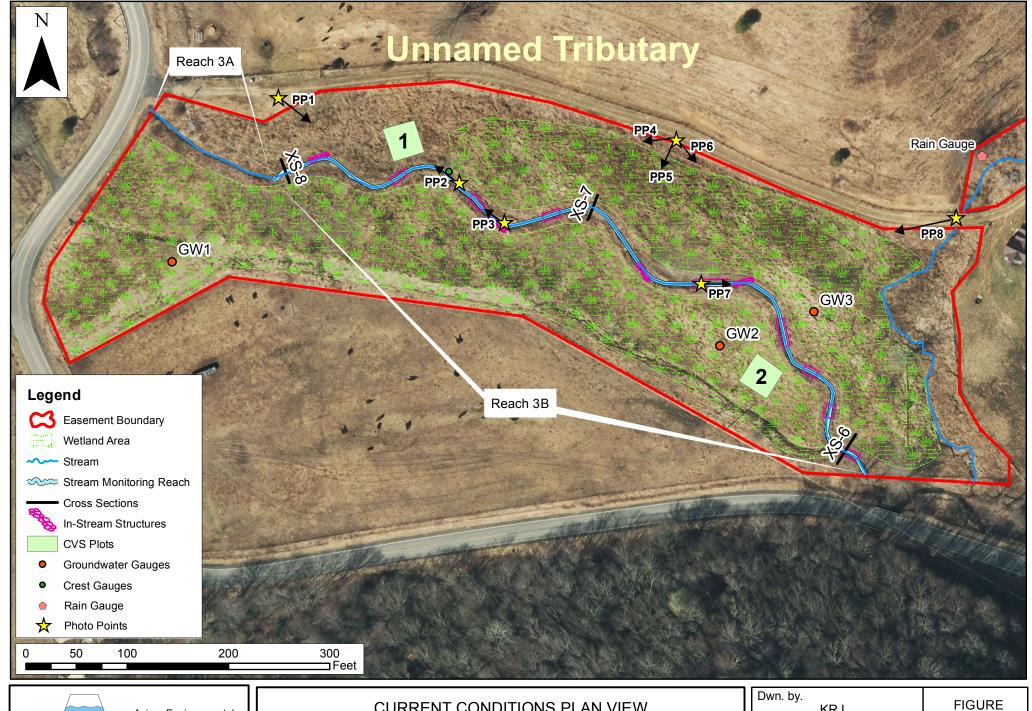
Table 4. Project Baseline Information and Attributes


Tate Farm (Ripshin Branch) Stream and Wetland Restoration Site (DMS Project Number 372)

Tate Farm (Ripshin Branch) Str			,	OMS Project	Number 372)		
		oject Infor						
Project Name Tate Farm (Ripshin Branch)								
Project County	Ashe							
Project Area (Acres)	61.92							
Project Coordinates (NAD83	1,037,279.65, 1,234,847,66							
2007)								
-	Project Watershed Summary Information							
Physiographic Region	Blue Ridge							
Ecoregion	Southern Cry	stalline Ric	dges and Mou	ıntains				
Project River Basin	Upper New							
USGS 8-digit HUC	05050001							
USGS 14-digit HUC	05050001010	0050						
NCDWQ Subbasin	05-07-02							
Project Drainage Area (Sq. Mi.)	2.0							
Project Drainage Area	<5%							
Impervious Surface								
Watershed Type	Rural							
diversite di Egypt		Summary I	nformation					
Parameters	Reach 1	Reach 2	Area 1	Area 2	Area 3	Area 4		
	(Ripshin	(UT)			Tributaries			
	Branch)	(= -)						
Restored/Enhanced Length	,	012	2410	2166	4020	2267		
(Linear Feet)	2300	912	2419	2166	4020	3367		
Drainage Area (Square Miles)	2.0	0.56	NA	NA	NA	NA		
NCDWQ Index Number	05-07		•		•			
NCDWQ Classification	C, NSW, Tr							
Valley Type/Morphological	II/BC4							
Description								
Dominant Soil Series	Colvard and	Toxawav						
Drainage Class	Well and Poo		d					
Soil Hydric Status	Nonhydric ar							
Slope	0.02	0.02						
FEMA Classification	NA							
Native Vegetation Community		uvial Fores	t and Swamp	Forest-Bog C	Complex			
Percent Composition of Exotic	<5%	<5%	v unu s wump	1 01 050 2 08 0	0111011			
Invasives	370	370						
TH V do I V C O	Regul	atory Cons	iderations					
Regulation	Applicable	atory coms						
Waters of the U.S. –Sections	Yes-Receive	d Annronri	ate Permits					
404 and 401	1 05 1000140	. rippropri						
Endangered Species Act	No Effect							
Historic Preservation Act	No							
CZMA/CAMA	NA NA							
FEMA Floodplain Compliance								
Essential Fisheries Habitat	Trout							
Essential Fisheries Haultat	11001							

APPENDIX B

VISUAL ASSESSMENT DATA


Figures 2 and 2A-2F. Current Conditions Plan View
Tables 5A-5B. Visual Stream Morphology Stability Assessment
Table 6. Vegetation Condition Assessment
Stream Fixed-Station Photographs
Vegetation Monitoring Photographs

Axiom Environmental 218 Snow Avenue Raleigh, NC 27603 (919) 215-1693 CURRENT CONDITIONS PLAN VIEW
TATE FARM
DMS PROJECT NUMBER 372
Ashe County, North Carolina

Dwn. by. KRJ	FIGURE
Date: Nov 2015	2
Project: 12-004.13	

Axiom Environmental, Inc.

Axiom Environmental 218 Snow Avenue Raleigh, NC 27603 (919) 215-1693 CURRENT CONDITIONS PLAN VIEW
TATE FARM (UT)
DMS PROJECT NUMBER 372
Ashe County, North Carolina

Dwn. by. KRJ
Date:

Nov 2015

Project: 12-004.13

2A

Axio Axiom Environmental, Inc.

Axiom Environmental 218 Snow Avenue Raleigh, NC 27603 (919) 215-1693 CURRENT CONDITIONS PLAN VIEW TATE FARM (RIPSHIN BRANCH) DMS PROJECT NUMBER 372 Ashe County, North Carolina

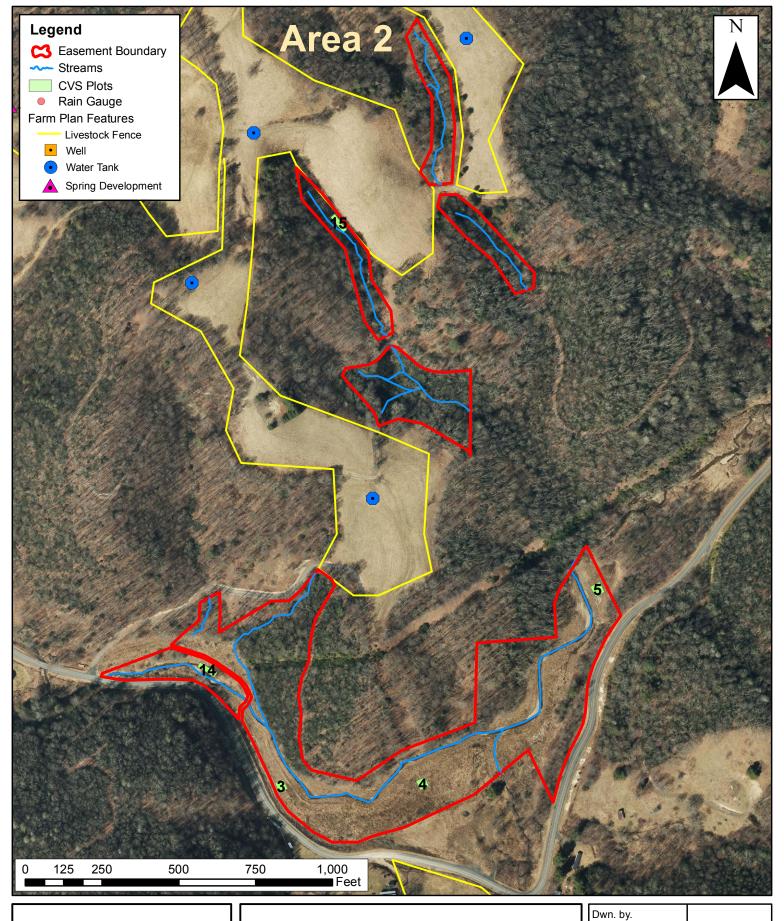
Dwn. by	KRJ
Date:	Nov 2015
Project:	12-004.13

PIGURE 2B

Axiom 218 Sn Raleigl (919) 2

Axiom Environmental 218 Snow Avenue Raleigh, NC 27603 (919) 215-1693 CURRENT CONDITIONS PLAN VIEW
TATE FARM (AREA 1)
DMS PROJECT NUMBER 372
Ashe County, North Carolina

)wr	ı. by	KRJ	


Date: Nov 2015

Project:

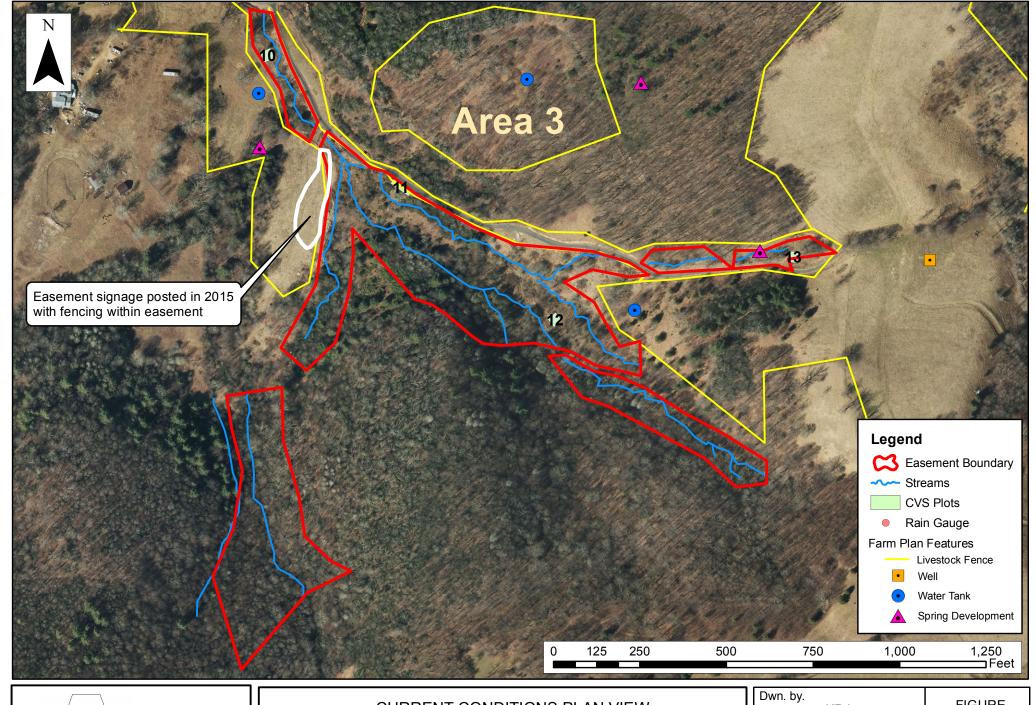
12-004.13

FIGURE

2C

Axiom Environmental 218 Snow Avenue Raleigh, NC 27603 (919) 215-1693

CURRENT CONDITIONS PLAN VIEW
TATE FARM (AREA 2)
DMS PROJECT NUMBER 372
Ashe County, North Carolina

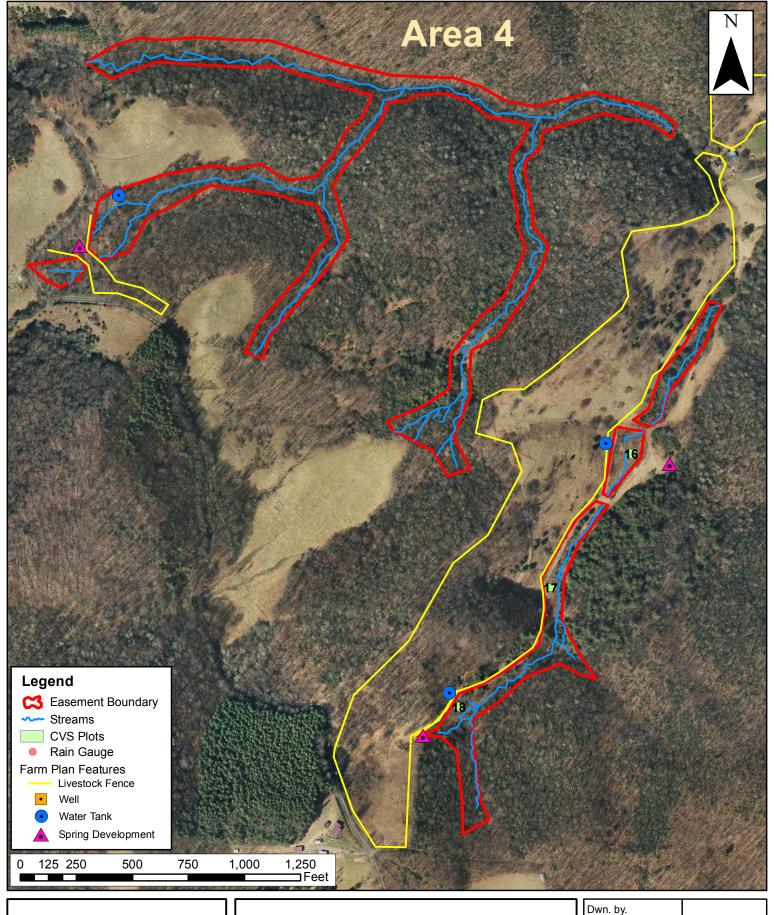

KRJ

Date:

Nov 2015

Project: 12-004.13 FIGURE

2D



Axiom Environmental 218 Snow Avenue Raleigh, NC 27603 (919) 215-1693

CURRENT CONDITIONS PLAN VIEW
TATE FARM (AREA 3)
DMS PROJECT NUMBER 372
Ashe County, North Carolina

- 7	KRJ	
Date:	Nov 2015	
Project:	12-004.13	

FIGURE 2E

CURRENT CONDITIONS PLAN VIEW
TATE FARM (AREA 4)
DMS PROJECT NUMBER 372
Ashe County, North Carolina

Wn. by. KRJ

Date:

. . .

Nov 2015

Project: 12-004.13

FIGURE

2F

Table 5A

Visual Stream Morphology Stability Assessment

Reach ID Assessed Length Unnamed Tributary

800

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	12	12			100%			
1. Bed	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	10	10			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	10	10			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	10	10						
		2. Thalweg centering at downstream of meander (Glide)	10	10			100%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	4	4			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	4	4			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	4	4			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	4	4			100%			

Table 5B

Visual Stream Morphology Stability Assessment

Grade control structures exhibiting maintenance of grade across the sill.

Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)

Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.

Structures lacking any substantial flow underneath sills or arms.

Reach ID Assessed Length

2. Grade Control

3. Bank Protection

2a. Piping

4. Habitat

3. Engineered

Structures

Ripshin Branch 1444

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	21	21			100%			
1. Bed	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	25	25			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	25	25			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	25	25			100%			
		2. Thalweg centering at downstream of meander (Glide)	25	25			100%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			100%			
i		1	T .							

0

8

8

8

0

8

8

8

NA

100%

100%

100%

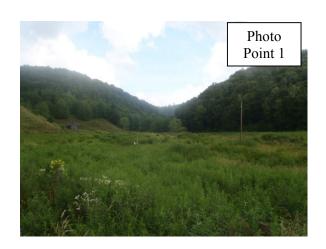
Table 6 <u>Vegetation Condition Assessment</u>

Planted Acreage¹

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	Tan	2	0.22	1.3%
2. Low Stem Density Areas	Woody stem densities clearly below target levels.	0.1 acres	NA	NA	8.00	45.8%
			Total	2	8.22	47.0%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	NA	0	0.00	0.0%
		Cu	mulative Total	2	8.22	47.0%

Easement Acreage² 61.9

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Areas or points (if too small to render as polygons at map scale).	100 SF	NA	0	0.00	0.0%
5. Easement Encroachment Areas ³	Areas or points (if too small to render as polygons at map scale).	none	NA	0	0.00	0.0%


1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

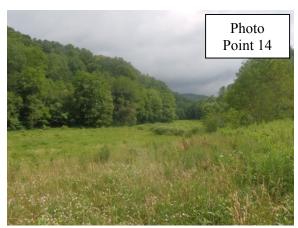
4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern species are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 there over a concern group are shown because the property of t

^{2 =} The acreage within the easement boundaries.

^{3 =} Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

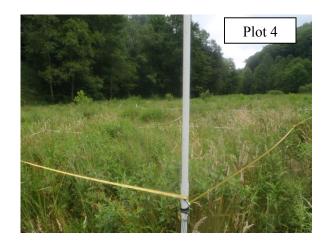
Tate Farm (Ripshin Branch) Stream Fixed-Station Photographs Taken July 2015

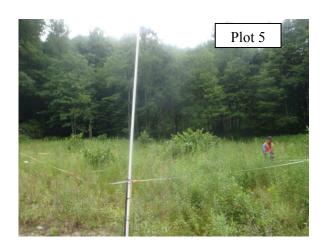
Tate Farm (Ripshin Branch) Stream Fixed-Station Photographs Taken July 2015 (continued)

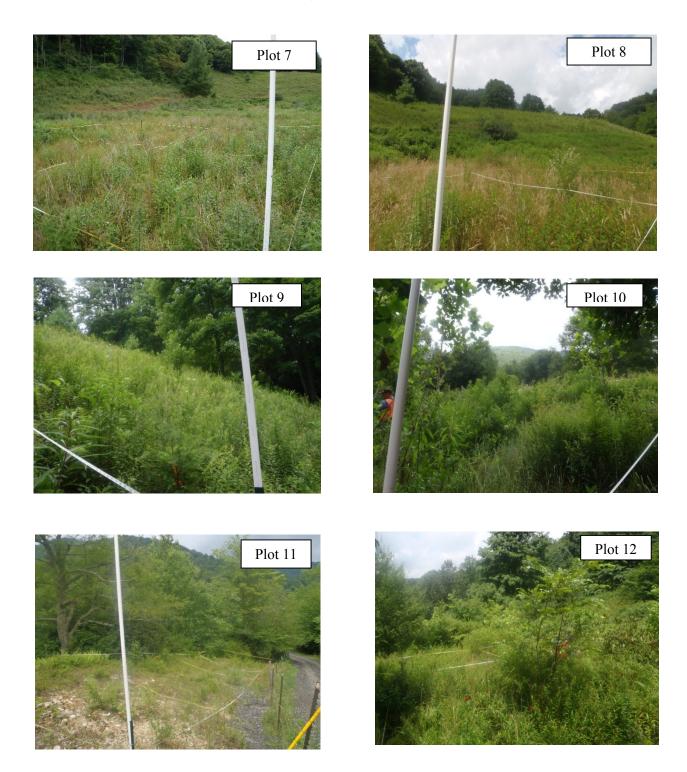


Tate Farm (Ripshin Branch) Stream Fixed-Station Photographs Taken July 2015 (continued)






Tate Farm (Ripshin Branch) Vegetation Monitoring Photographs Taken July 2015





Tate Farm (Ripshin Branch) Vegetation Monitoring Photographs Taken July 2015 (Continued)

Tate Farm (Ripshin Branch) Vegetation Monitoring Photographs Taken July 2015 (Continued)

APPENDIX C

VEGETATION PLOT DATA

- Table 7. Vegetation Plot Criteria Attainment
- Table 8. CVS Vegetation Plot Metadata
- Table 9. Total and Planted Stems by Plot and Species

Table 7. Vegetation Plot Criteria Attainment Based on Planted Stems

Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
1	Yes	
2	No	
3	Yes	
4	No	
5	Yes	
6	No	
7	No	
8	No	
9	Yes	220/
10	No	33%
11	Yes	
12	No*	
13	No	
14	Yes	
15	No	
16	No	
17	No	
18	No*	

^{*}When including natural recruits such as red maple (*Acer rubrum*), mountain laurel (*Kalmia latifolia*), eastern hemlock (*Tsuga canadensis*), and silky willow (*Salix sericea*) in plot 12 and striped maple (*Acer pensylvanicum*), sweet birch (*Betula lenta*), hickory (*Carya* spp.), green ash (*Fraxinus pennsylvanica*), and tulip tree (*Liriodendron tulipifera*) in plot 18, these plots exceed success criteria.

Table 8. CVS Vegetation Plot Metadata

rate rarın (Kipsilin Brancii) Su	ream and Wetland Restoration Site (DMS Project Number 372)
Report Prepared By	Corri Faquin
Date Prepared	7/22/2015 10:28
database name	Axiom-EEP-2015-A-v2.3.1.mdb
database location	\\ae-sbs\Share\CVS database\2015
computer name	ED-PC
file size	42053632
DESCRIPTION OF WORKSHE	CETS IN THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all
Proj, total stems	natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead
ALL Stems by Plot and spp	and missing stems are excluded.
PROJECT SUMMARY	
Project Code	372
project Name	Tate Farm
Description	Stream and Wetland Restoration
River Basin	New
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	18

Table 9. Total and Planted Stems by Plot and Species DMS Project Code 372. Project Name: Tate Farm

		Current Plot Data (MY4 2015)																													
			37	372-01-0001			372-01-0002			2-01-00	003	37	72-01-00	004	372-01-00	05	37	72-01-00	06	37	2-01-0007	7	37	2-01-0	008	37	2-01-00	009	37	2-01-001	10
Scientific Name	Common Name	Species Type	PnoLS	P-all T		PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS P-all	T	PnoLS	P-all	Т	PnoLS	P-all T		PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	г
Acer pensylvanicum	striped maple	Shrub Tree																													
Acer rubrum	red maple	Tree			1																										
Acer saccharinum	silver maple	Tree																										2			
Aesculus flava	yellow buckeye	Tree																													
Alnus	alder	Shrub																													
Alnus serrulata	hazel alder	Shrub													4 4	4															
Aronia arbutifolia	Red Chokeberry	Shrub				1	1	1							3 3	3	1														
Betula lenta	sweet birch	Tree																													
Betula nigra	river birch	Tree	3	3	3				1	1	1				2 2	2	:			2	2	2	1	1	1						
Carpinus caroliniana	American hornbeam	Tree																													
Carya	hickory	Tree																													
Cornus amomum	silky dogwood	Shrub	1	1	1	1	1	1				2	. 2	. 2																	
Corylus americana	American hazelnut	Shrub							1								1	1	2							1	1	1			
Crataegus	hawthorn	Tree							1								1														
Crataegus phaenopyrum		n Shrub Tree																													
Fagus grandifolia	American beech	Tree																													
Fraxinus pennsylvanica	green ash	Tree	5	5	5	2	2	2	2 3	3	3	1	. 1	. 1	2 2	2				1	1	1									
llex opaca	American holly	Tree				2	2	2																							
Kalmia	laurel																														
Kalmia latifolia	mountain laurel	Shrub Tree																													
Liriodendron tulipifera	tuliptree	Tree															1									3	3	3			
Malus	apple	Tree															1												1	1	
Pinus strobus	eastern white pine	Tree																													
Platanus occidentalis	American sycamore	Tree							6	6	6				2 2	2													3	3	-3
Prunus serotina	black cherry	Tree							1	1	1																				
Quercus alba	white oak	Tree																													
Quercus rubra	northern red oak	Tree																								1	1	1			
Rhododendron	rhododendron																1														
Rhododendron maximum	great laurel	Shrub															1									1	1	1			
Rhus	sumac	shrub																													
Salix	willow	Shrub or Tree							1																						
Salix nigra	black willow	Tree							1																				igwdot		
Salix sericea	silky willow	Shrub																											H		
	· ·	_	-	-					1				-	1															\vdash	-	
Sambucus canadensis	Common Elderberry	Shrub							1			-	1	1			1									_	•		 -	-	
Tsuga canadensis	eastern hemlock	Tree							1			1	1	1												3		_	lder	-	
Vaccinium corymbosum	highbush blueberry	Shrub							<u> </u>					<u> </u>			1	1	1							1	1	1	lacksquare		
Viburnum dentatum	southern arrowwood	Shrub	3		3				<u> </u>																						
		Stem count	12	12	13	6	6	6	11	11	11	. 3	3	4	13 13	13	2	2	3	3	3	3	1	1	1	10	10	12	4	4	4
				1			1		<u> </u>	1			1		1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02		0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	4	4	5	4	4	4	4	4	4	- 2	. 2	3	5 5	5	2	2	2	2	2	2	1	1	1	6	6	,	2	2	2
		Stems per ACRE	485.6	485.6	526.1	242.8	242.8	242.8	445.2	445.2	445.2	121.4	121.4	161.9	526.1 526.1	526.1	80.94	80.94	121.4	121.4	121.4	121.4	40.47	40.47	40.47	404.7	404.7	485.6	161.9	161.9	161.9

Color for Density
Exceeds requirements by 10% PnoLS = Planted excluding livestakes Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%
Fails to meet requirements by more than 10% P-all = Planting including livestakes

T = All planted and natural recruits including livestakes T includes natural recruits

Table 9. Total and Planted Stems by Plot and Species (continued) DMS Project Code 372. Project Name: Tate Farm

			Current Plot Data (MY4 2015) 372-01-0011 372-01-0012 372-01-0013 372-01-0014 372-01-0015 372-01-0016 372-01-0017 372-01-0018													Annual Means																
			372	372-01-0011 372-01-0012				372-01-00		372	-01-001	.5	372-01-00)16	372-01-00	017	372-01-003	18	M	Y4 (2015)	ı		/3 (2014)	ſ	MY2 (2013)	1	VIY1 (20	12)				
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS P-all	T	PnoLS P-a	II T	F	noLS	P-all T	Г	PnoLS P-all	Т	PnoLS P-all	T	PnoLS P-all	Т	PnoLS	P-all T	Pno	oLS F	P-all T	PnoLS	P-all T	PnoL	6 P-all	T
Acer pensylvanicum	striped maple	Shrub Tree																				3			3			1				3
Acer rubrum	red maple	Tree			2			1																	4		1	O	1	7		12
Acer saccharinum	silver maple	Tree																							2							
Aesculus flava	yellow buckeye	Tree																										7				3
Alnus	alder	Shrub									1	1	1										1	1	1	1	1	1			1 :	1 1
Alnus serrulata	hazel alder	Shrub																					4	4	4	4	4	1 4	4 4	4	5 !	5 ز
Aronia arbutifolia	Red Chokeberry	Shrub																					4	4	4	5	5	5 !	5 5	5	5 !	5 5
Betula lenta	sweet birch	Tree			16																	2			18							3
Betula nigra	river birch	Tree				1	1	1			1	1	1										11	11	11	13	13 1	3 14	4 14 1	4 1	2 12	2 12
Carpinus caroliniana	American hornbeam	Tree									1	1	1										1	1	1	1	1 3) :	1 1	1	1 :	33
Carya	hickory	Tree																				5			5			5				
Cornus amomum	silky dogwood	Shrub									1	1	1				1 1	1					6	6	6	6	6	5 !	5 5	5	5 !	5 5
Corylus americana	American hazelnut	Shrub									4	4	4										6	6	7	6	6	5 (6 6 3	0	6 (6 6
Crataegus	hawthorn	Tree																											1 1	3		
	Washington hawthorn		2	2	2												2 2	2					4	4	4	4	4	5 3	2 2	2	2 2	2 2
Fagus grandifolia	American beech	Tree																										9		2		1
Fraxinus pennsylvanica	green ash	Tree				1	1	1														1	15	15	16	16	16 1	5 1!	5 15 1	5 1	0 10) 14
llex opaca	American holly	Tree									1	1	1										3	3	3	3	3	3	3 3	3	3 3	3 3
Kalmia	laurel																												1	5		1
Kalmia latifolia	mountain laurel	Shrub Tree																										3				2
Liriodendron tulipifera	tuliptree	Tree			5								5									1	3	3	14	3	3 1	1	3 3	4	3 3	3 16
Malus	apple	Tree			_			1						1									1	1	2	1	1	1	1 1	1	1 :	1 1
Pinus strobus	eastern white pine	Tree			1																				1			1		2		1
Platanus occidentalis		Tree							2 2	2	,								1 1	1			14	14	14	15	15 1	5 14	4 14 1	4 1	4 14	1 14
Prunus serotina	•	Tree									1	1	1				1 1	1					3	3	3	4	4	1 :	3 3	3	3 3	3 3
Quercus alba	white oak	Tree			2						1	1	1										1	1	3	1	1	1	1 1	1	1 :	1 1
Quercus rubra	northern red oak	Tree	1	1	1									1									2	2	2	2	2	,	1 1	1	2 :	2 2
Rhododendron	rhododendron								1 1	1									1 1	1			2	2	2	2	2	2	2 2	9	1	1 4
Rhododendron maximum		Shrub	4	4	6	2	2	3															7	7	10	7	7	9	7 7	7	7	7 7
Rhus	sumac	shrub						_						1																		1
Salix	willow	Shrub or Tree						6			1														6			1	1			
Salix nigra	black willow	Tree						J			l			+			1	1						1	1		1	, 	2	2		1 1
Salix sericea	silky willow	Shrub															1								+		-	2	2	7	 	+
	,	Shrub									4	4	4										4	4	С	4	4	1	4 4	1	4	1 1
Sambucus canadensis	·							1			4	4	4										4	2	5	4	4	+ 4	4 4	4	4 4	4
Tsuga canadensis	eastern hemlock	Tree		- 4.4	4.4			1					1										3	3	5	3	3		3 3	4	2 4	1
Vaccinium corymbosum	highbush blueberry	Shrub	14	14	14								_										16			16	16 1		5 15 1	9 1	3 13	
Viburnum dentatum	southern arrowwood										/	/	/										10	10		10	10 1		9 9	9		, ,
		Stem count	21	21	49	4	4	14	3 3	3	22	22	28	0	0	0	4 5	5	2 2	. 2	0 0	12	121		.83	127	128 21	119		3 10		9 192
	size (ares)			1			1		1			<u> </u>			1		1		1		1			18			18		18		18	
		size (ACRES)		0.02			0.02		0.02			02			0.02		0.02		0.02		0.02			0.44			0.44		0.44		0.44	
		Species count	4	4	9	3	3	7	2 2	2		10	12	0	0	0	3 4	4	2 2	. 2	0 0	5	22		_	22	23 3			-		
	;	Stems per ACRE	849.8	849.8	1983	161.9	161.9	566.6	121.4 121.4	121.4	890.3 89	0.3	L133	0	0	0	161.9 202.3	202.3	80.94 80.94	80.94	0 0	485.6	272	274.3 41	1.4 28	35.5	287.8 472.	267.	5 272 456.	4 242.	8 245.:	431.7
olor for Density																																$\overline{}$

Color for Density
Exceeds requirements by 10% Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%
Fails to meet requirements by more than 10%

PnoLS = Planted excluding livestakes P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

T includes natural recruits

APPENDIX D STREAM SURVEY DATA

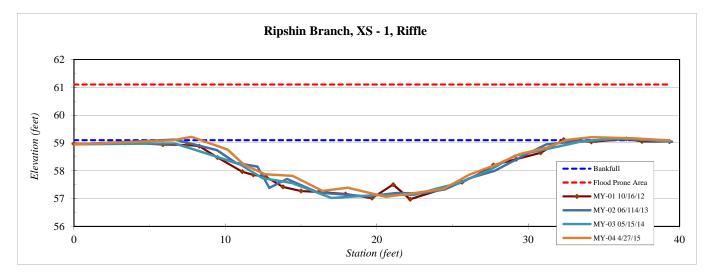
Cross-section Plots

Longitudinal Profile Plots

Substrate Plots

Tables 10a-d. Baseline Stream Data Summary

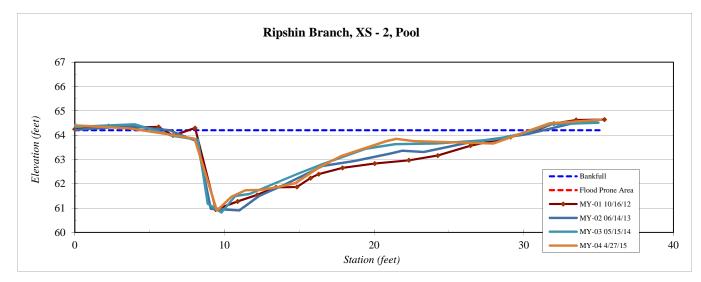
Tables 11a-d. Monitoring Data


River Basin:	Upper New
Watershed:	Tate Farm
XS ID	XS - 1, Riffle
Drainage Area (sq mi):	1.6
Date:	4/27/2015
Field Crew:	Perkinson, Gibbons

Station	Elevation
0.00	58.95
6.53	59.09
7.78	59.22
10.16	58.76
11.21	58.22
12.63	57.88
14.45	57.82
16.42	57.28
18.08	57.39
20.61	57.06
22.68	57.21
24.42	57.35
26.09	57.85
27.85	58.21
29.43	58.60
31.22	58.83
32.55	59.11
34.20	59.21
36.92	59.17
39.31	59.10
	-

SUMMARY DATA	
Bankfull Elevation:	59.1
Bankfull Cross-Sectional Area:	29.0
Bankfull Width:	24.3
Flood Prone Area Elevation:	61.1
Flood Prone Width:	80.0
Max Depth at Bankfull:	2.0
Mean Depth at Bankfull:	1.2
W / D Ratio:	20.4
Entrenchment Ratio:	3.3
Bank Height Ratio:	1.0

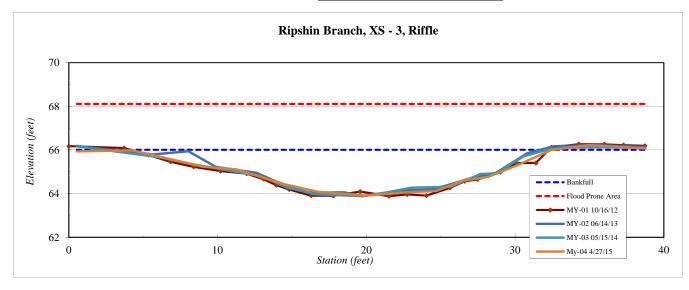
Stream Type	B/C


River Basin:	Upper New
Watershed:	Tate Farm
XS ID	XS - 2, Pool
Drainage Area (sq mi):	1.6
Date:	4/27/2015
Field Crew:	Perkinson, Gibbons

Station	Elevation
0.00	64.40
3.68	64.27
6.42	64.01
8.01	63.85
9.49	60.89
10.48	61.47
11.41	61.73
12.47	61.75
13.44	61.86
14.73	62.02
16.36	62.69
17.79	63.14
19.07	63.40
20.85	63.76
21.49	63.85
22.7	63.76
28.0	63.65
31.7	64.48
35.15	64.64

SUMMARY DATA	
Bankfull Elevation:	64.2
Bankfull Cross-Sectional Area:	27.7
Bankfull Width:	26.0
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	3.3
Mean Depth at Bankfull:	1.1
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

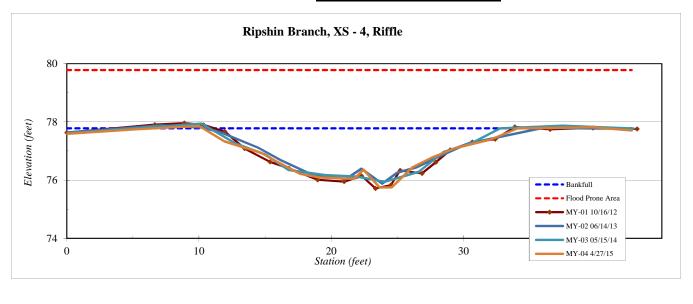
Stream Type	B/C


River Basin:	Upper New
Watershed:	Tate Farm
XS ID	XS - 3, Riffle
Drainage Area (sq mi):	1.6
Date:	4/27/2015
Field Crew:	Perkinson, Gibbons

Station	Elevation
0.54	65.94
4.26	65.99
9.01	65.23
11.23	65.12
13.20	64.71
14.51	64.43
16.70	64.09
19.95	63.91
22.70	64.06
24.74	64.13
26.48	64.59
28.20	64.77
30.15	65.30
32.46	66.01
35.0	66.22
38.8	66.07

SUMMARY DATA	
Bankfull Elevation:	66.0
Bankfull Cross-Sectional Area:	35.5
Bankfull Width:	28.2
Flood Prone Area Elevation:	68.1
Flood Prone Width:	>80
Max Depth at Bankfull:	2.1
Mean Depth at Bankfull:	1.3
W / D Ratio:	22.4
Entrenchment Ratio:	2.8
Bank Height Ratio:	1.0

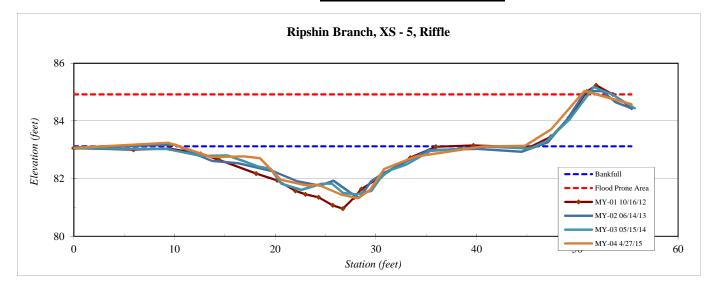
Stream Type	B/C


River Basin:	Upper New
Watershed:	Tate Farm
XS ID	XS - 4, Riffle
Drainage Area (sq mi):	1.6
Date:	4/27/2015
Field Crew:	Perkinson, Gibbons

Elevation
77.59
77.75
77.86
77.33
76.93
76.68
76.22
76.09
76.05
76.36
75.75
75.75
76.44
76.79
77.10
77.39
77.78
77.81
77.71

SUMMARY DATA	
Bankfull Elevation:	77.8
Bankfull Cross-Sectional Area:	25.3
Bankfull Width:	23.8
Flood Prone Area Elevation:	79.8
Flood Prone Width:	>80
Max Depth at Bankfull:	2.0
Mean Depth at Bankfull:	1.1
W / D Ratio:	21.6
Entrenchment Ratio:	3.4
Bank Height Ratio:	1.0

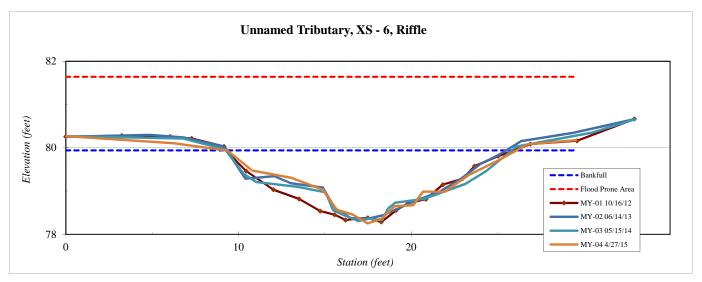
Stream Type	B/C


River Basin:	Upper New
Watershed:	Tate Farm
XS ID	XS - 5, Riffle
Drainage Area (sq mi):	1.6
Date:	4/27/2015
Field Crew:	Perkinson, Gibbons

Station	Elevation
0.0	83.1
9.4	83.2
13.6	82.7
16.9	82.8
18.5	82.7
20.6	82.0
23.1	81.8
24.3	81.8
26.6	81.4
28.2	81.3
29.4	81.6
30.8	82.3
34.0	82.8
40.6	83.12
44.8	83.14
47.4	83.70
50.7	85.04
55.4	84.58

SUMMARY DATA	
Bankfull Elevation:	83.1
Bankfull Cross-Sectional Area:	21.7
Bankfull Width:	31.0
Flood Prone Area Elevation:	84.9
Flood Prone Width:	>80
Max Depth at Bankfull:	1.8
Mean Depth at Bankfull:	0.7
W / D Ratio:	44.3
Entrenchment Ratio:	2.6
Bank Height Ratio:	1.0

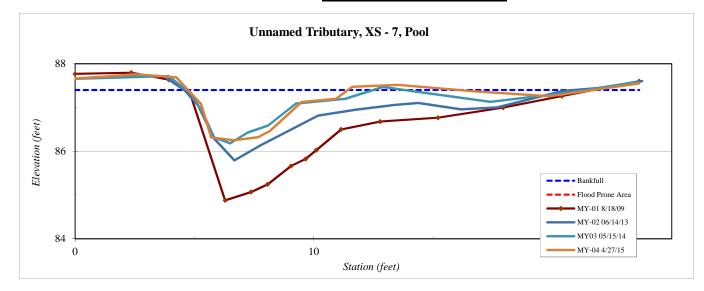
Stream Type	B/C


River Basin:	Upper New
Watershed:	Tate Farm
XS ID	XS - 6, Riffle
Drainage Area (sq mi):	0.6
Date:	4/27/2015
Field Crew:	Perkinson, Gibbons

- TI - 41
Elevation
80.3
80.1
79.9
79.5
79.3
79.0
78.6
78.5
78.3
78.4
78.7
78.7
79.0
78.99
79.37
79.72
80.08
80.17

SUMMARY DATA Bankfull Elevation: 7	
Ponkfull Floretions	
Dankiun Elevation.	9.9
Bankfull Cross-Sectional Area:	4.4
Bankfull Width:	6.8
Flood Prone Area Elevation:	31.6
Flood Prone Width:	>80
Max Depth at Bankfull:	1.7
Mean Depth at Bankfull:	0.9
W / D Ratio:	9.6
Entrenchment Ratio:	4.8
Bank Height Ratio:	1.0

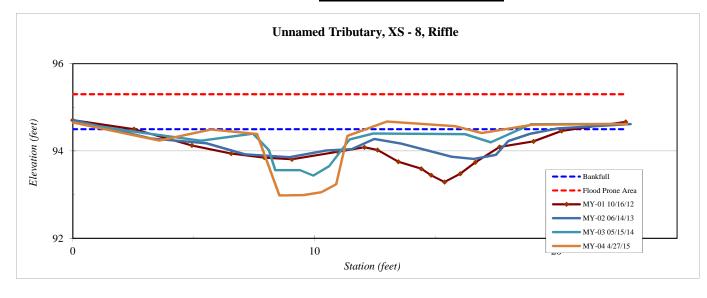
Stream Type	B/C


River Basin:	Upper New
Watershed:	Tate Farm
XS ID	XS - 7, Pool
Drainage Area (sq mi):	0.6
Date:	4/27/2015
Field Crew:	Perkinson, Gibbons

Station	Elevation
0.0	87.7
2.6	87.8
4.2	87.7
5.3	87.1
5.7	86.3
6.7	86.3
7.7	86.3
8.2	86.5
9.5	87.1
10.9	87.2
11.6	87.5
13.5	87.5
16.7	87.4
19.9	87.26
23.6	87.55

SUMMARY DATA	
Bankfull Elevation:	87.4
Bankfull Cross-Sectional Area:	5.1
Bankfull Width:	13.5
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.4
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

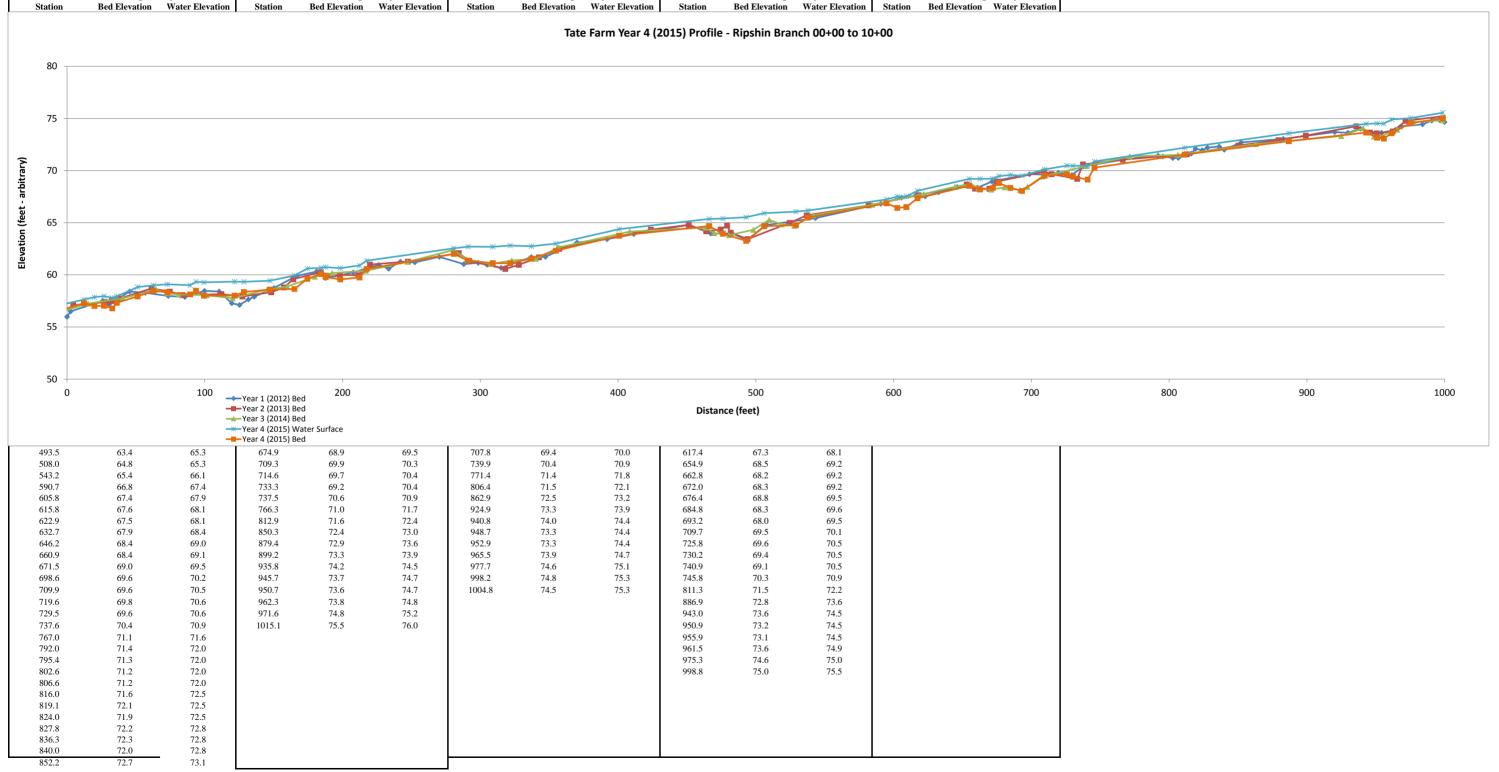
Stream Type B/C


River Basin:	Upper New
Watershed:	Tate Farm
XS ID	XS - 8, Riffle
Drainage Area (sq mi):	0.6
Date:	4/27/2015
Field Crew:	Perkinson, Gibbons

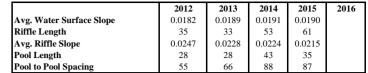
7 2 5
5
4
0
0
1
2
3
7
6
4
6
52

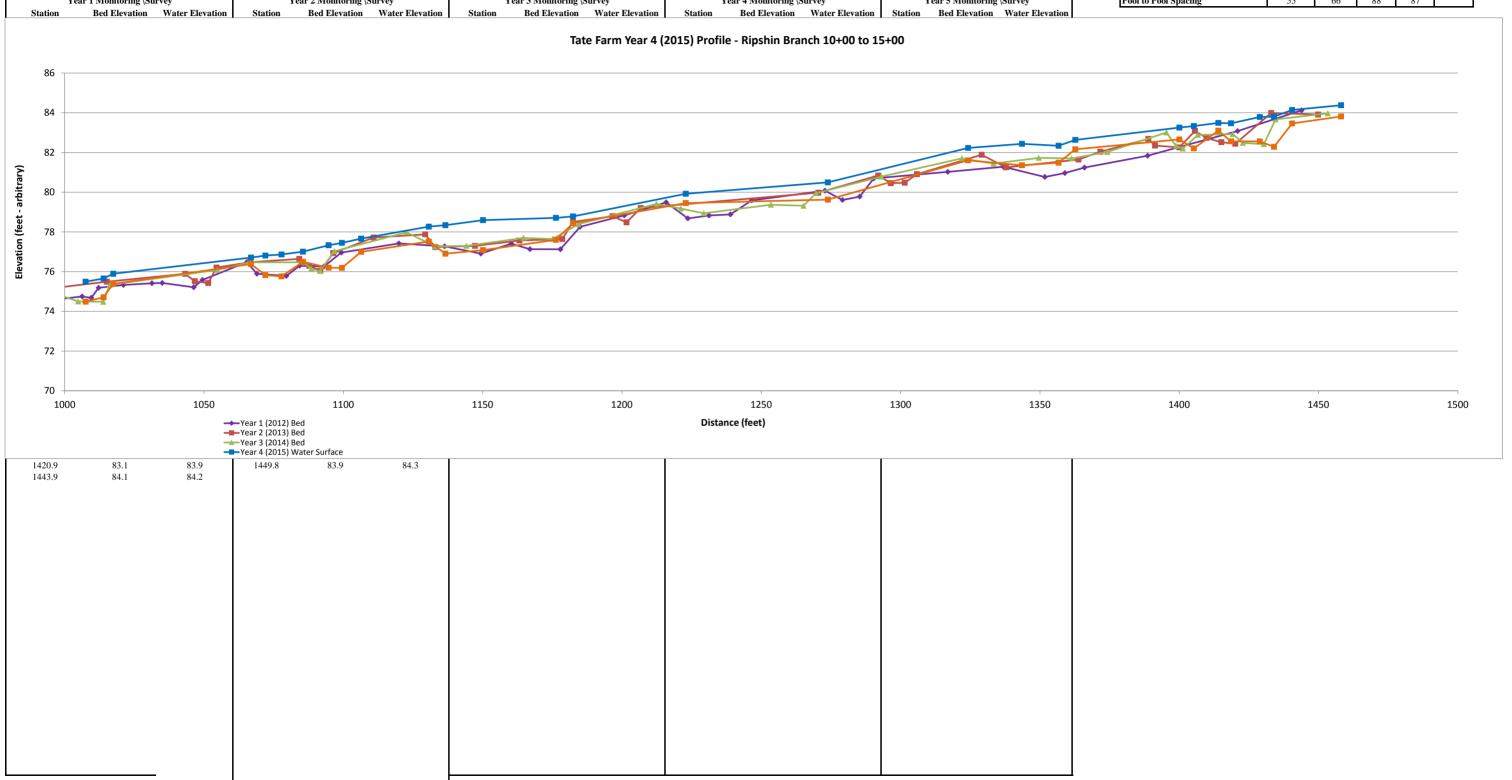
SUMMARY DATA	
Bankfull Elevation:	94.5
Bankfull Cross-Sectional Area:	4.6
Bankfull Width:	5.6
Flood Prone Area Elevation:	95.3
Flood Prone Width:	>80
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	1.5
W / D Ratio:	3.7
Entrenchment Ratio:	14.3
Bank Height Ratio:	1.0

Stream Type B/C


Project Name Tate Farm - Profile

Reach Ripshin Branch Station 00+00 - 10+00


Feature Profile
Date 4/27/15
Crew Perkinson, Gibbons


								ı							
2012 2013				2014			2015			2016					
Yea	Year 1 Monitoring \Survey			Year 2 Monitoring \Survey			Year 3 Monitoring \Survey			Year 4 Monitoring \Survey			Year 5 Monitoring \Survey		
Station	Bed Elevation W	Vater Elevation	Station	Bed Elevation	Water Elevation										

	2012	2013	2014	2015	2016
Avg. Water Surface Slope	0.0182	0.0189	0.0191	0.0190	
Riffle Length	35	33	53	61	
Avg. Riffle Slope	0.0247	0.0228	0.0224	0.0215	
Pool Length	28	28	43	35	
Pool to Pool Spacing	55	66	88	87	

Project Name Tate Farm - Profile Ripshin Branch Station 10+00 - 15+00 Profile Feature 4/27/15 Date Perkinson, Gibbons 2012 2013 2014 2015 Pool Length Year 2 Monitoring \Survey Year 1 Monitoring \Survey Year 4 Monitoring \Survey Year 3 Monitoring \Survey Year 5 Monitoring \Survey Bed Elevation Water Elevation Bed Elevation Water Elevation Bed Elevation Water Elevation Station Bed Elevation Water Elevation Bed Elevation Water Elevation Tate Farm Year 4 (2015) Profile - Ripshin Branch 10+00 to 15+00


Project Name Tate Farm - Profile

Reach Unnamed Tributary Station 00+00 - 08+00

Feature Profile
Date 4/27/15
Crew Perkinson, Gibbons

								ı						
2012 2013				2014			2015			2016				
Year 1 Monitoring \Survey			Year 2 Monitoring \Survey			Year 3 Monitoring \Survey			Year 4 Monitoring \Survey			Year 5 Monitoring \Survey		
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation									

	2012	2013	2014	2015	2016
Avg. Water Surface Slope	0.0201	0.0205	0.0196	0.0195	
Riffle Length	30	22	26	20	
Avg. Riffle Slope	0.0235	0.0294	0.0251	0.0289	
Pool Length	21	24	13	17	
Pool to Pool Spacing	44	48	37	37	

	Pebble Count,					
·	Tate Farm					
	New River					
Note	e: Cross Section	4 - Ripshin Branc	h			
100%		Peb	ble Count, Tate F	arm		
90%				<i>p</i>		
80%						
70%						
				/		
60%						
ਛ 50% 						
20% Luceut Finer The 20% Luceut Finer Fine						
Jer 40%						
這 30%						
₩ 20% 						
10%						
_ 1070						
0% +	0.4		40	400	4000	40000
0.01	0.1	7	10	100	1000	10000
Particle S	Size (mm)	Cumulative Percer	nt A Percent Ite	m — Riffle -	→ Pool → Run	

Size percent less than (mm)						Percen	it by substra	ate type		
D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
6.000	26.53	56.9	157	483	0%	10%	42%	36%	12%	0%

		Pebble Count,					
	<u> </u>	Tate Farm					
		New River					
	Note	Cross Section	n 8 - Unnamed Trib	utary			
			Peh	ble Count, Tate F	arm		
1	100%			bie Gourit, Tate i		, , , , , , , , , , , , , , , , , , , 	
	90%			<i>[</i>			
	80%						
	70%						
	60%						
han	50%						
Percent Finer Than	40%						
Fine	30%						
ent	20%						
_ erc							
ш	10%	4					
	0% + 0.01	0.1	1	10	100	1000	10000
	Particle S	size (mm)	Cumulative Percer	nt ◆ Percent Ite	em —≟—Riffle —	→ Pool → Run	→ Glide

	Size per	cent less th	an (mm)			Percen	it by substra	ite type		
D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
0.210	5.42	8.4	18	22	4%	26%	70%	0%	0%	0%

Table 10a. Baseline Stream Data Summary (Ripshin Branch)
Tate Farm (Ripshin Branch) - DMS Project Number 372

Parameter	Gauge		Regional Cu	ırve		Pre-Exi	sting Co	ondition	1]	Reference	Reach(es) Data			Design			Monit	oring Ba	seline	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med		SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD
BF Width (ft)					21.0			24.0		14.4			17.1		23.0	25.0						
Floodprone Width (ft)					35			60		27			95		25	80						
BF Mean Depth (ft)					1.2			1.3		1.2			1.3		1.3	1.4						
BF Max Depth (ft)							1.9			1.7			1.9		2.7	2.9						
BF Cross Sectional Area (ft ²)					26.0			29.0		17.6			20.7		30.0	35.0						
Width/Depth Ratio					18.5			21.0		11.8			13.2		17.0	18.0						
Entrenchment Ratio					1.9			2.6		1.6			6.6		1.5	2.0						
Bank Height Ratio							1.8					1.2			1.0	1.2						
Profile							-10															
Riffle length (ft)																						
Riffle slope (ft/ft)							0.0040			0.0170			0.0420				0.0400		1			
Pool length (ft)					9.0			43.0		11.0			18.7		20.0	70.0			1			
Pool Max depth (ft)							3.6			0.9			2.6		3.5	3.6						
Pool spacing (ft)					33.0			253.0		25.7			69.3		80.0	130.0						
Pattern Tattern																						
Channel Beltwidth (ft)					7			80		20			41.7		29	150						
Radius of Curvature (ft)					10			160		25.3			185		55	135						
Rc:Bankfull width (ft/ft)					0.4			1		1.8			5.9		3	4.2						
Meander Wavelength (ft)					30			240		97.5			140		85	365						
Meander Width ratio					0.8			2.1		6.8			8		4.4	6.6						
Transport parameters																						
Reach Shear Stress (competency) lbs/ft ²					I														I			
Max part size (mm) mobilized at bankfull																						
Stream Power (transport capacity) W/m ²																						
Additional Reach Parameters																			<u> </u>			
Rosgen Classification						I	34/F4/C	4			I	34/C4				B4/C4						
Bankfull Velocity (fps)							5.5									4.8 - 5						
Bankfull Discharge (cfs)							158															
Valley Length (ft)																						
Channel Thalweg Length (ft)																2300						
Sinuosity							1.2				1.	1 - 1.2				1.1 - 1.3						
Water Surface Slope (ft/ft)						0.	018-0.0	24				2 - 0.01	9			0.02						
BF slope (ft/ft)																						
Bankfull Floodplain Area (acres)																						
% of Reach with Eroding Banks																						
Channel Stability or Habitat Metric																						
Biological or Other																						

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)
Tate Farm (Ripshin Branch) - DMS Project Number 372 - Ripshin Branch

Parameter	Pre-Existi	ng Conditi	ion			Referen	ce Reach(e	s) Data			Design			Mo	nitori	ng Base	eline	
Ri%/RU%P%G%/S%																		
SC%/SA%/G%/C%/B%BE%																		
d16/d35/d50/d84/d95	0.2-0.3	4.0-12.0				0.5	3.0-5.0											
Entrainment Class <1.5/1.5-1.99/2.0-4.9/5.0-																		
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0																		

Table 10c. Baseline Stream Data Summary (Unnamed Tributary)
Tate Farm (Ripshin Branch) - DMS Project Number 372

Parameter	Gauge]	Regional Cı	urve		Pre-Exi	sting Co	ondition	l		Reference	Reach(e	es) Data			Design			Monit	oring Ba	seline	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD
BF Width (ft)							18.0					14.4					16.0					
Floodprone Width (ft)							28					95			16	80	50					
BF Mean Depth (ft)							0.9					1.2					0.9					
BF Max Depth (ft)							1.4					1.7			1.3	1.4						
BF Cross Sectional Area (ft ²)							16.3					17.6					14.0					
Width/Depth Ratio							21.8					11.8					18.0					
Entrenchment Ratio							1.6					6.6			1.0	2.5						
Bank Height Ratio							2.3					1.2					1.0					
Profile											•	•	•			•	•	-			•	
Riffle length (ft)																						
Riffle slope (ft/ft)							0.0400					0.0170					0.0400					
Pool length (ft)					3.6			19.9				18.7					25.0					
Pool Max depth (ft)							1.4					2.6					1.9					
Pool spacing (ft)					11.0		80.0					69.0			50.0	90.0	60.0					
Pattern																						
Channel Beltwidth (ft)					12			33				41.7			35	100						
Radius of Curvature (ft)					2.5			25				25.3			40	200						
Rc:Bankfull width (ft/ft)							0.8					1.8			3.4	14						
Meander Wavelength (ft)					50			170				97.5			120	160						
Meander Width ratio							4.9					2.9			8.3	8.8						
Transport parameters																						
Reach Shear Stress (competency) lbs/ft ²																						
Max part size (mm) mobilized at bankfull																						
Stream Power (transport capacity) W/m ²																						
Additional Reach Parameters		•									•	•	•			•	•	•				
Rosgen Classification							B4/F4					C4				B4/C4						
Bankfull Velocity (fps)							5.1									4.5						-
Bankfull Discharge (cfs)							83.07															
Valley Length (ft)																						
Channel Thalweg Length (ft)																912						
Sinuosity							1.2					1.2				1.0-1.2						
Water Surface Slope (ft/ft)							0.02					0.012				0.02						
BF slope (ft/ft)																						
Bankfull Floodplain Area (acres)																						
% of Reach with Eroding Banks																						
Channel Stability or Habitat Metric																						
Biological or Other																						

Table 10d. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)
Tate Farm (Ripshin Branch) - DMS Project Number 372 - Unnamed Tributary

Parameter			Pre-Exist	ing Conditi	on				Referen	nce Reach(es) Data			Design			Mo	nitori	ng Bas	eline	
Ri%/RU%P%G%/S%																					
SC%/SA%/G%/C%/B%BE%																					
d16/d35/d50/d84/d95	0.2	4.8	12.8	44.2	78.5		8.0	11.8	18.4	73.0	100.0										
Entrainment Class <1.5/1.5-1.99/2.0-4.9/5.0-																					
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0																					

Table 11a. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections)

Tate Farm (Ripshin Branch) - DMS Project Number 372 - Ripshin Branch

			Cr	ross Sectio	n 1					Cı	oss Sectio	on 2					Cr	ross Sectio	on 3					Cr	oss Sectio	on 4					Cr	oss Sectio	n 5		
Parameter				Riffle							Pool							Riffle							Riffle							Riffle			
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)		23.4	23.3	25.8	24.3				23.2	25.0	25.3	26.0				28.1	23.3	28.7	28.2				21.4	23.3	22.0	23.8				21.7	24.0	25.3	31.0		
Floodprone Width (ft) (approx)		80.0	80.0	80.0	80.0				NA	NA	NA	NA				80.0	80.0	80.0	80.0				0.08	80.0	80.0	80.0				80.0	80.0	80.0	80.0		
BF Mean Depth (ft)		1.2	1.2	1.1	1.2				1.6	1.3	1.1	1.1				1.3	1.3	1.2	1.3				1.1	0.9	1.1	1.1				0.9	0.8	0.7	0.7		
BF Max Depth (ft)		1.9	1.9	1.9	2.0				3.4	3.3	3.4	3.3				2.1	2.0	2.1	2.1				2.0	1.8	1.8	2.0				1.9	1.7	1.5	1.8		
BF Cross Sectional Area (ft ²)		27.6	27.9	28.8	29.0				36.1	32.2	28.1	27.7				37.4	30.7	33.2	35.5				23.5	21.0	24.4	25.3				19.2	18.0	18.3	21.7		
Width/Depth Ratio		19.8	19.5	23.1	20.4				NA	NA	NA	NA				21.1	17.7	24.8	22.4				19.5	25.9	19.8	21.6				24.5	32.0	35.0	44.3		
Entrenchment Ratio		3.4	3.4	3.1	3.3				NA	NA	NA	NA				2.8	3.4	2.8	2.8				3.7	3.4	3.6	3.4				3.7	3.3	3.2	2.6		
Bank Height Ratio	, and the second	1.0	1.0	1.0	1.0				1.0	1.0	1.0	1.0				1.0	1.0	1.0	1.0				1.0	1.0	1.0	1.0				1.0	1.0	1.0	1.0		
d50 (mm)	, and the second																						79.2	81.6	80.3	56.9									

Table 11b. Monitoring Data - Stream Reach Data Summary

Parameter			Baseline					MY-1					MY-2					MY-3					MY-4					MY-5		
Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD
BF Width (ft)						21.4	23.7	22.6	28.1	3.1	23.3	23.5	23.3	24	0.4	22.0	25.5	25.6	28.7	2.7	23.8	26.8	26.3	31	3.4					
Floodprone Width (ft)								80					80					80				80								
BF Mean Depth (ft)						0.9	1.1	1.2	1.3	0.2	0.8	1.1	1.1	1.3	0.2	0.7	1.0	1.1	1.2	0.2	0.7	1.1	1.2	1.3	0.3					
BF Max Depth (ft)						1.9	2.0	2.0	2.1	0.1	1.7	1.9	1.9	2.0	0.1	1.5	1.8	1.9	2.1	0.3	1.8	2.0	2.0	2.1	0.1					
BF Cross Sectional Area (ft ²)						19.2	26.9	25.6	37.4	7.8	18.0	24.4	24.5	30.7	5.9	18.3	26.2	26.6	33.2	6.4	21.7	27.9	27.2	35.5	5.9				1	
Width/Depth Ratio						19.5	21.2	20.6	24.1	2.2	17.9	23.3	22.7	30.0	5.6	20.0	25.9	23.7	36.1	7.1	20.3	27.0	21.7	44.3	11.6					
Entrenchment Ratio						2.8	3.4	3.6	3.7	0.4	3.3	3.4	3.4	3.4	0.1	2.8	3.2	3.1	3.6	0.4	2.6	3.0	3.1	3.4	0.4					
Bank Height Ratio								1.0					1.0					1.0					1.0							
Profile -Downstream						=					_										=					=				
Riffle length (ft)						5.3	35.1	26.3	107.8	28.6	14.2	56.5	33	198.3	50.7	13	71	52	233	63	10	61	38	197	56					
Riffle slope (ft/ft)						0.0059	0.0247	0.0260	0.0445	0.0105	0.0145	0.0238	0.0228	0.0355	0.0065	0.0014	0.0224	0.0239	0.0363	0.01	0.0056	0.0215	0.0212	0.0398	0.0096					
Pool length (ft)						8.6	27.7	24.7	77.0	16.2	10.1	34.1	27.8	102.9	25.5	11	43	46	95	26	14.0	34.7	28.7	80.8	21.9					
Pool Max depth (ft)								3.4					3.3					3.4					3.3							
Pool spacing (ft)						8.6	55.4	43.8	160.7	37.0	24.3	84.0	65.9	234.1	54.6	28	113	88	270	77	20.9	87.2	76.0	229.5	61.4					
Pattern																														
Channel Beltwidth (ft)																														
Radius of Curvature (ft)																														
Rc:Bankfull width (ft/ft)																														
Meander Wavelength (ft)																														
Meander Width ratio																														
Additional Reach Parameters																														
Rosgen Classification						T T		B/C-type					B/C-type					B/C-type			ı		B/C-type			I				
Channel Thalweg Length (ft)								1444					1449					453			†		1499							
Sinuosity								1.2					1.2					1.2					1.2							
Water Surface Slope (Channel) (ft/ft)								0.0182					0.0189					0.0191					0.019							
BF slope (ft/ft)																					1					1				
Ri%/RU%P%G%/S%																														
SC%/SA%/G%/C%/B%BE%																														
d16/d35/d50/d84/d95																														
% of Reach with Eroding Banks								0					0					0					0							
Channel Stability or Habitat Metric																														
Biological or Other																										 				

Table 11c. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections)

Tate Farm (Ripshin Branch) - DMS Project Number 372 - Unnamed Tributary

	-		Cr	oss Sectio	n 6					Cr	oss Sectio	n 7					Cr	oss Sectio	n 8		
Parameter				Riffle							Pool							Riffle			
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)		17.4	16.8	17.5	16.8				16.0	15.8	14.7	13.5				17.4	18.7	5.0	5.6		
Floodprone Width (ft) (approx)		80.0	80.0	80.0	80.0				NA	NA	NA	NA				80.0	80.0	80.0	80.0		
BF Mean Depth (ft)		1.0	0.9	1.0	0.9				0.9	0.6	0.3	0.4				0.5	0.4	0.5	0.0		
BF Max Depth (ft)		1.7	1.7	1.7	1.7				2.4	1.6	1.2	1.2				1.2	0.7	1.0	1.5		
BF Cross Sectional Area (ft ²)		17.4	15.8	16.9	14.4				14.5	8.9	4.9	5.1				8.9	7.6	2.6	4.6		
Width/Depth Ratio		17.4	17.9	18.1	19.6				NA	NA	NA	NA				34.0	46.0	9.6	3.7		
Entrenchment Ratio		4.6	4.8	4.6	4.8				NA	NA	NA	NA				4.6	4.3	16.0	14.3		
Bank Height Ratio		1.0	1.0	1.0	1.0				1.0	1.0	1.0	1.0				1.0	1.0	1.0	1.0		
d50 (mm)																1.0	7.3	8.4	8.4		

Table 11d. Monitoring Data - Stream Reach Data Summary

Tate Farm (Ripshin Branch) - DMS Project Number 372 - Unnamed Tributary

Parameter			Baseline					MY-1					MY-2					MY-3					MY-4					MY-5		
	-					•										•														
Dimension and Substrate - Riffle	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD
Only																											<u> </u>	<u> </u>	1	
BF Width (ft)								17.4			16.8	17.8	17.8	18.7	1.3	5.0	11.3	11.3	17.5	8.8	5.6	11.2	11.2	16.8	6.7					
Floodprone Width (ft)								80					80					80					80							
BF Mean Depth (ft)						0.5	0.8	0.8	1.0	0.4	0.4	0.7	0.7	0.9	0.4	0.5	0.8	0.8	1.0	0.4	0.8	0.8	0.8	0.8	0.0					
BF Max Depth (ft)						1.2	1.5	1.5	1.7	0.4	0.7	1.2	1.2	1.7	0.7	1.0	1.4	1.4	1.7	0.5	1.5	1.6	1.6	1.7	0.1			'		
BF Cross Sectional Area (ft ²)						8.9	13.2	13.2	17.4	6.0	7.6	11.7	11.7	15.8	5.8	2.6	9.8	9.8	16.9	10.1	4.6	9.4	9.4	14.1	6.7			<u> </u>	1	
Width/Depth Ratio						17.4	26.1	26.1	34.8	12.3	18.7	32.7	32.7	46.8	19.9	10.0	13.8	13.8	17.5	8.1	7.0	14.0	14.0	21.0	9.9					
Entrenchment Ratio								4.6			4.3	4.5	4.5	4.8	0.3	4.6	10.3	10.3	16.0	8.1	4.8	9.5	9.5	14.3	6.7					
Bank Height Ratio								1.0					1.0					1.0					1.0				<u> </u>	'	<u> </u>	
Profile - Upstream																														
Riffle length (ft)						3.9	29.7	27.3	65	17.9	8.79	26.5	22.4	53	14.8	3	26	23	66	17	4.03	20.36	19.45	55.8	14.3		<u>'</u>	<u> </u>		
Riffle slope (ft/ft)						0.0064	0.0235	0.0233	0.0436		0.0038	0.0305			0.0154	0.0000	0.0251	0.0230	0.0627	0.02	0.0048	0.0289	0.0299	0.0632	0.0165					
Pool length (ft)						7.1	20.8	19.0	43.2	10.8	7.4	22.7	23.7	39.9	9.8	3.0	13.0	11.0	33.0	7.0	6.0	17.0	15.3	33.0	8.9					
Pool Max depth (ft)								2.4					1.6					1.2					1.2							
Pool spacing (ft)						7.1	43.6	39.3	103.9	28.7	12.9	42.7	47.9	85.2	18.3	8.0	37.0	35.0	78.0	20.0	10.6	37.2	37.9	88.5	20.3		<u> </u>	'	<u> </u>	
Pattern																														
Channel Beltwidth (ft)																														
Radius of Curvature (ft)																														
Rc:Bankfull width (ft/ft)																														
Meander Wavelength (ft)																														
Meander Width ratio																														
Additional Reach Parameters																														
Rosgen Classification								B/C-type					B/C-type					B/C-type	;				B/C-type			<u> </u>				
Channel Thalweg Length (ft)								799					803					816					814			<u> </u>				
Sinuosity								1.2					1.2					1.2					1.2			<u> </u>				
Water Surface Slope (Channel) (ft/ft)								0.0201					0.0205					0.0196					0.0195							
BF slope (ft/ft)																														
Ri%/RU%P%G%/S%																														
SC%/SA%/G%/C%/B%BE%																														
d16/d35/d50/d84/d95																														
% of Reach with Eroding Banks								19					0					0					0							
Channel Stability or Habitat Metric																														
Biological or Other																														

APPENDIX E HYDROLOGY DATA

Table 12. Verification of Bankfull Events

Table 13. Wetland Hydrology Criteria Attainment Summary

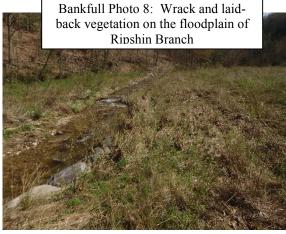
Groundwater Gauge Graphs

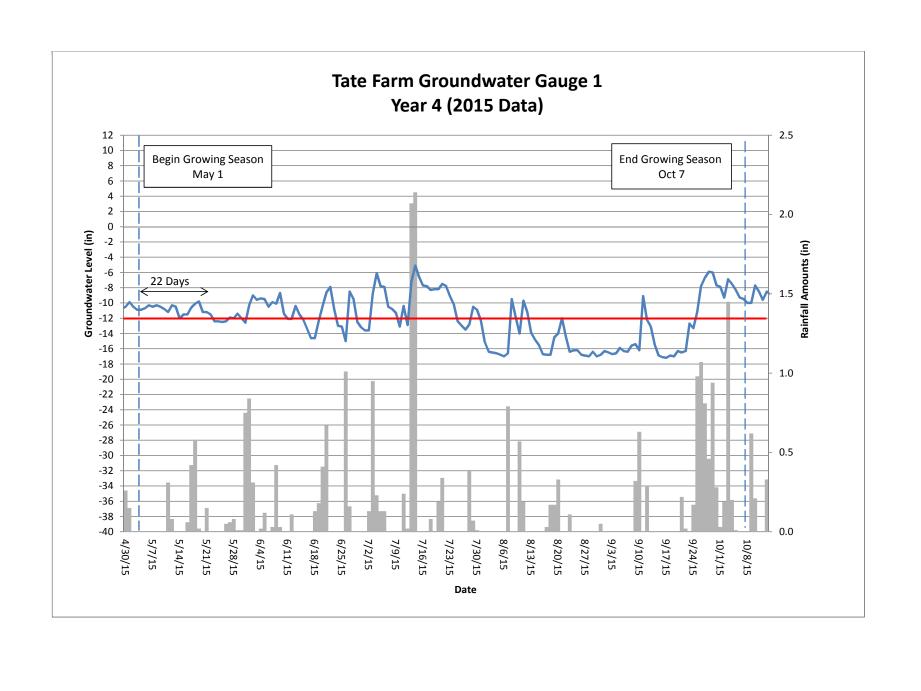
Table 12. Verification of Bankfull Events

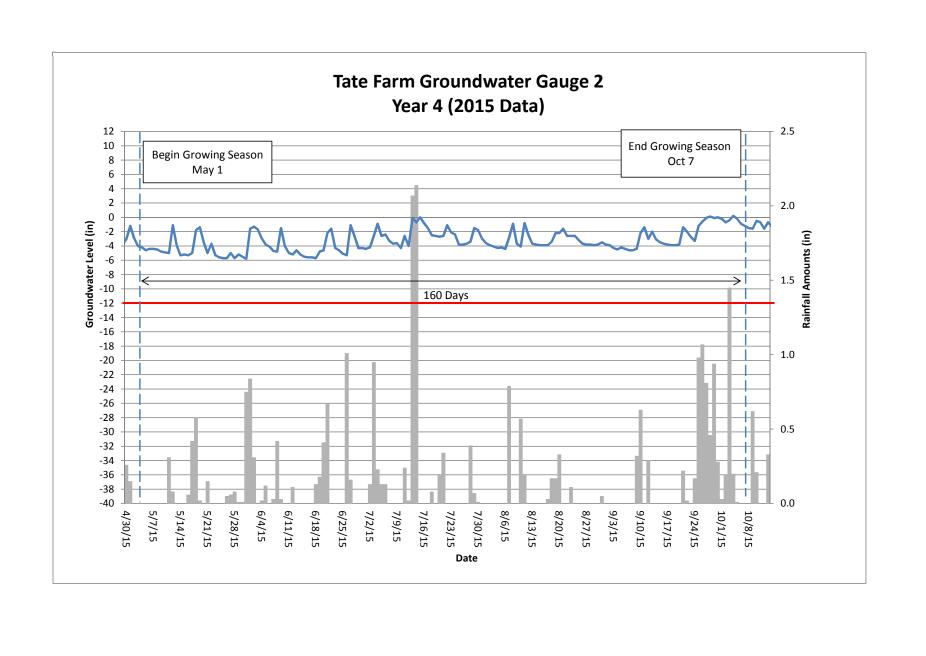
Tate Farm (Ripshin Branch) Stream and Wetland Restoration Site (DMS Project Number 372)

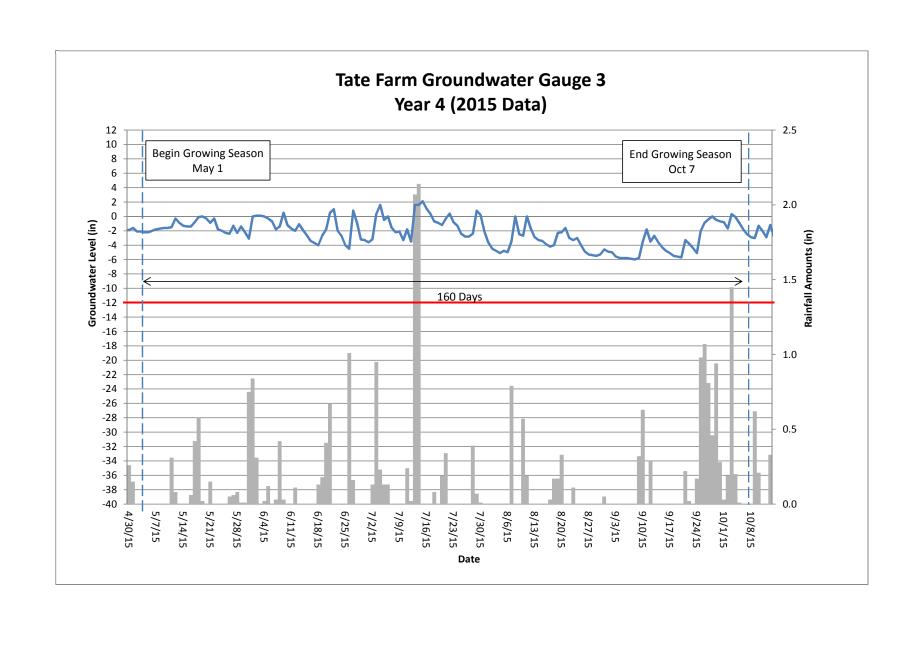
Date of Data Collection	Date of Occurrence	Method	Photo (if available)
June 7, 2013	January 17, 2013	Approximately 3.9 inches of rain documented* at a nearby rain station over a four day period from January 14-17, 2013.	
April 28, 2013	January 30, 2013	Wrack and sediment observe on top of banks after approximately 4.2 inches of rain was documented* at a nearby rain station on January 30, 2013.	1-3
June 12, 2013	May 7, 2013	Approximately 4.34 inches of rain documented over three days at the onsite rain gauge.	
June 12, 2013	May 24, 2013	Wrack observed in the floodplain after approximately 5.92 inches of rain was documented over eight days at the onsite rain gauge.	4
August 13, 2013	July 4, 2013	Approximately 4.13 inches of rain documented over two days at the onsite rain gauge.	
August 13, 2013	August 10, 2013	Wrack and laid back vegetation observed in the flood plain after approximately 3.52 inches of rain was documented at the onsite rain gauge.	5
October 7, 2014	September 2-8, 2014	Wrack observed in floodplain after rainfall totaling 4.37 inches documented at the onsite rain gauge.	6
April 26, 2015	April 19, 2015	Wrack and laid-back vegetation observed on the floodplain after approximately 2.32 inches of rain documented at an onsite rain guage on 4/19/15 with an additional 3.21 inches documented the preceding 2 weeks.	7-8
November 5, 2015	July 14, 2015	Approximately 4.21 inches of rain documented over two days at the onsite rain gauge.	
November 5, 2015	October 3, 2015	Approximately 6.38 inches of rain documented over a ten day period at the onsite rain gauge.	

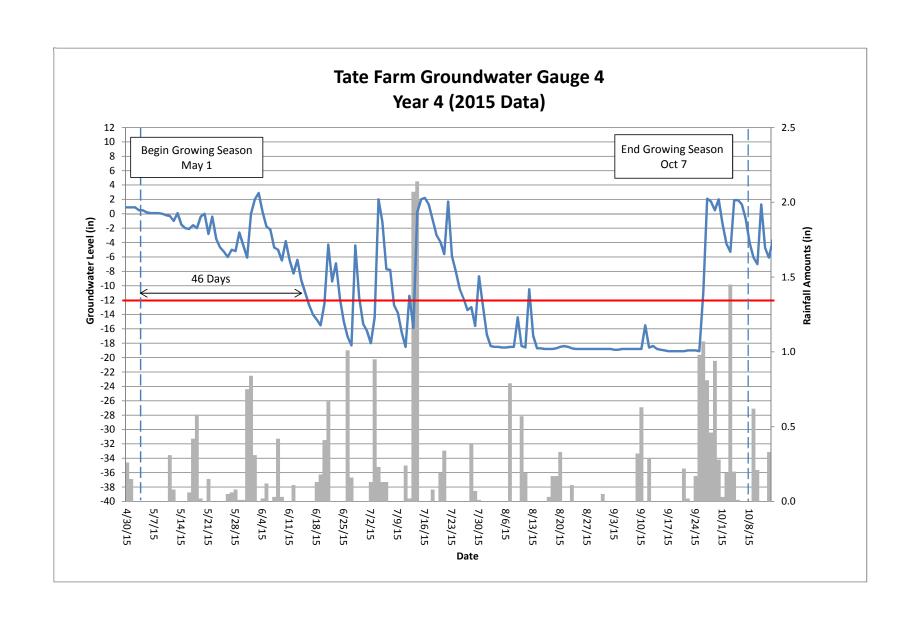
^{*}Jefferson Weather Station (Weatherunderground 2014)

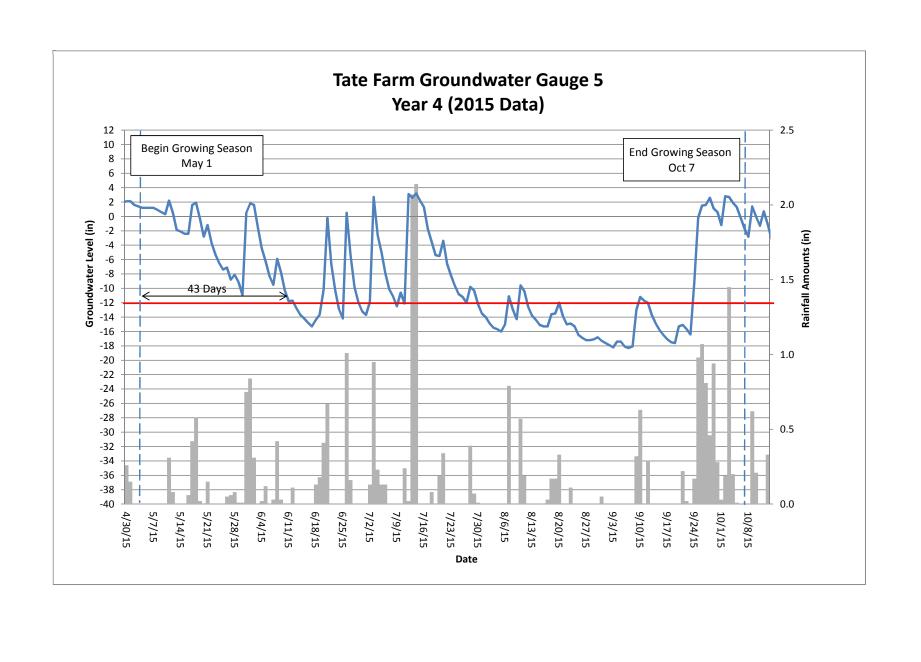



Table 13. Wetland Hydrology Criteria Attainment Summary


Tate Farm (Rinshin Branch) Stream and Wetland Restoration Site (DMS Project Number 372)


Gauge	Success Criter		Consecutive Days Percentage)	During Growing S	season
	Year 1 (2012)*	Year 2 (2013)	Year 3 (2014)	Year 4 (2015)	Year 5 (2016)
1		Yes/130 Days (81%)	Yes/34 Days (21%)	Yes/22 Days (14%)	
2		Yes/160 Days (100%)	Yes/160 Days (100%)	Yes/160 Days (100%)	
3		Yes/160 Days (100%)	Yes/160 Days (100%)	Yes/160 Days (100%)	
4		Yes/152 Days (95%)	No/14 Days** (8%)	Yes/46 Days (29%)	
5		Yes/160 Days (100%)	Yes/47 Days (29%)	Yes/43 Days (27%)	
6		Yes/160 Days (100%)	Yes/46 Days (29%)	Yes/114 Days (71%)	


^{*} Groundwater Gauges were installed in October 2012; therefore, groundwater monitoring was initiated during the Year 2 (2013) monitoring year.


^{**}Gauge 4 malfunctioned at beginning of 2014 growing season resulting in loss of data. A battery failure at the beginning of the growing season resulted in a loss of data. The gauge was replaced and is currently functioning properly, but during a subsequent visit additional data was lost due to a failed Meazura PDA. Based on hydrology of the additional gauges, in addition to abundant precipitation, it is likely that Gauge 4 would have met success for year 3 (2014).

